cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141602 Integer part of 2^n/log(2^n).

Original entry on oeis.org

2, 2, 3, 5, 9, 15, 26, 46, 82, 147, 268, 492, 909, 1688, 3151, 5909, 11123, 21010, 39809, 75638, 144073, 275050, 526182, 1008516, 1936352, 3723754, 7171675, 13831089, 26708310, 51636066, 99940774, 193635250, 375535031, 728979766, 1416303547
Offset: 1

Views

Author

Cino Hilliard, Aug 21 2008

Keywords

Comments

2^n/log(2^n) is an approximation to the number of primes < 2^n.

Crossrefs

Programs

  • Magma
    A141602:= func< n | Floor(2^n/(n*Log(2))) >;
    [A141602(n): n in [1..40]]; // G. C. Greubel, Sep 21 2024
    
  • Mathematica
    Floor[2^#/Log[2^#]]&/@Range[40] (* Harvey P. Dale, Mar 11 2013 *)
  • PARI
    g(n) = for(x=1,n,y=floor(2^x/log(2^x));print1(y","))
    
  • PARI
    a(n) = 2^n\log(2^n); \\ Michel Marcus, Feb 24 2021
    
  • SageMath
    def A141602(n): return int(2^n/(n*log(2)))
    [A141602(n) for n in range(1,41)] # G. C. Greubel, Sep 21 2024

Formula

a(n) = A050500(2^n) = floor(2^n*A007525/n) >= A000799(n). - R. J. Mathar, Jan 05 2009