cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141617 Triangle read by rows: T(n, k) = binomial(n,k)*prime(k)*prime(n-k), for 1 <= k <= n-1, n >= 1, with T(0, 0) = 1, T(n, 0) = T(n, n) = prime(n).

Original entry on oeis.org

1, 2, 2, 3, 8, 3, 5, 18, 18, 5, 7, 40, 54, 40, 7, 11, 70, 150, 150, 70, 11, 13, 132, 315, 500, 315, 132, 13, 17, 182, 693, 1225, 1225, 693, 182, 17, 19, 272, 1092, 3080, 3430, 3080, 1092, 272, 19, 23, 342, 1836, 5460, 9702, 9702, 5460, 1836, 342, 23
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Aug 23 2008

Keywords

Comments

For the purpose of this sequence define prime(0)=1.

Examples

			Triangle begins as:
   1;
   2,   2;
   3,   8,    3;
   5,  18,   18,     5;
   7,  40,   54,    40,     7;
  11,  70,  150,   150,    70,    11;
  13, 132,  315,   500,   315,   132,    13;
  17, 182,  693,  1225,  1225,   693,   182,    17;
  19, 272, 1092,  3080,  3430,  3080,  1092,   272,   19;
  23, 342, 1836,  5460,  9702,  9702,  5460,  1836,  342,  23;
  29, 460, 2565, 10200, 19110, 30492, 19110, 10200, 2565, 460, 29;
  ...
		

Crossrefs

Programs

  • Magma
    function A141617(n,k)
      if n eq 0 then return 1;
      else return Binomial(n,k)*NthPrime(k)*NthPrime(n-k);
      end if;
    end function;
    [A141617(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 26 2024
    
  • Maple
    p:= n-> `if`(n=0, 1, ithprime(n)):
    T:= (n, k)-> binomial(n, k)*p(k)*p(n-k):
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Apr 26 2023
  • Mathematica
    A141617[n_, k_]:= If[n==0, 1, If[k==0 || k==n, Prime[n], Binomial[n, k]*Prime[k]*Prime[n-k]]];
    Table[A414617[n,k], {n,0,12}, {k,0,n}]//Flatten
  • SageMath
    def A141617(n,k):
        if n==0: return 1
        elif k==0 or k==n: return nth_prime(n)
        else: return binomial(n,k)*nth_prime(k)*nth_prime(n-k)
    flatten([[A141617(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 26 2024

Formula

Symmetry: T(n, k) = T(n, n-k).