A141617 Triangle read by rows: T(n, k) = binomial(n,k)*prime(k)*prime(n-k), for 1 <= k <= n-1, n >= 1, with T(0, 0) = 1, T(n, 0) = T(n, n) = prime(n).
1, 2, 2, 3, 8, 3, 5, 18, 18, 5, 7, 40, 54, 40, 7, 11, 70, 150, 150, 70, 11, 13, 132, 315, 500, 315, 132, 13, 17, 182, 693, 1225, 1225, 693, 182, 17, 19, 272, 1092, 3080, 3430, 3080, 1092, 272, 19, 23, 342, 1836, 5460, 9702, 9702, 5460, 1836, 342, 23
Offset: 0
Examples
Triangle begins as: 1; 2, 2; 3, 8, 3; 5, 18, 18, 5; 7, 40, 54, 40, 7; 11, 70, 150, 150, 70, 11; 13, 132, 315, 500, 315, 132, 13; 17, 182, 693, 1225, 1225, 693, 182, 17; 19, 272, 1092, 3080, 3430, 3080, 1092, 272, 19; 23, 342, 1836, 5460, 9702, 9702, 5460, 1836, 342, 23; 29, 460, 2565, 10200, 19110, 30492, 19110, 10200, 2565, 460, 29; ...
Links
- G. C. Greubel, Rows n = 0..100 of the triangle, flattened
Programs
-
Magma
function A141617(n,k) if n eq 0 then return 1; else return Binomial(n,k)*NthPrime(k)*NthPrime(n-k); end if; end function; [A141617(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 26 2024
-
Maple
p:= n-> `if`(n=0, 1, ithprime(n)): T:= (n, k)-> binomial(n, k)*p(k)*p(n-k): seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Apr 26 2023
-
Mathematica
A141617[n_, k_]:= If[n==0, 1, If[k==0 || k==n, Prime[n], Binomial[n, k]*Prime[k]*Prime[n-k]]]; Table[A414617[n,k], {n,0,12}, {k,0,n}]//Flatten
-
SageMath
def A141617(n,k): if n==0: return 1 elif k==0 or k==n: return nth_prime(n) else: return binomial(n,k)*nth_prime(k)*nth_prime(n-k) flatten([[A141617(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 26 2024
Formula
Symmetry: T(n, k) = T(n, n-k).
Comments