A141678 Symmetrical triangle of coefficients based on invert transform of A001906.
1, 3, 3, 8, 9, 8, 21, 24, 24, 21, 55, 63, 64, 63, 55, 144, 165, 168, 168, 165, 144, 377, 432, 440, 441, 440, 432, 377, 987, 1131, 1152, 1155, 1155, 1152, 1131, 987, 2584, 2961, 3016, 3024, 3025, 3024, 3016, 2961, 2584, 6765, 7752, 7896, 7917, 7920, 7920, 7917, 7896, 7752, 6765
Offset: 1
Examples
Triangle begins as: 1; 3, 3; 8, 9, 8; 21, 24, 24, 21; 55, 63, 64, 63, 55; 144, 165, 168, 168, 165, 144; 377, 432, 440, 441, 440, 432, 377; ...
Links
- G. C. Greubel, Rows n=1..101 of triangle, flattened
- Matthew Blair, Rigoberto Flórez, and Antara Mukherjee, Honeycombs in the Pascal triangle and beyond, arXiv:2203.13205 [math.HO], 2022. See p. 5.
- B. E. Tenner, Interval structures in the Bruhat and weak orders, arXiv:2001.05011 [math.CO], 2020.
Crossrefs
Cf. A001906.
Programs
-
Magma
b:= func< n| n eq 0 select 1 else Fibonacci(2*n) >; [[b(n-k+1)*b(k+1): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Apr 06 2019
-
Mathematica
b[0]=1; b[n_]:= Sum[k*b[n-k], {k, 1, n}]; Table[b[n-m+1]*b[m+1], {n, 0, 10}, {m, 0, n}]//Flatten f[n_]:= If[n == 0, 1, Fibonacci[2*n]]; Table[f[n-k+1]*f[k+1], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Apr 06 2019 *)
-
PARI
{b(n) = if(n==0, 1, fibonacci(2*n))}; for(n=0, 10, for(k=0, n, print1(b(n-k+1)*b(k+1), ", "))) \\ G. C. Greubel, Apr 06 2019
-
Sage
@CachedFunction def b(n): if n==0: return 1 return fibonacci(2*n) [[b(n-k+1)*b(k+1) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Apr 06 2019
Formula
Let b(n) = Sum_{k=1..n} k*b(n - k), then T(n, m) = b(n-m+1)*b(m+1).
Alternatively, let f(n) = Fibonacci(2*n) with f(0)=1, then T(n, k) = f(n-k+1)*f(k+1). - G. C. Greubel, Apr 06 2019
Extensions
Edited by G. C. Greubel, Apr 02 2019
Comments