cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141678 Symmetrical triangle of coefficients based on invert transform of A001906.

Original entry on oeis.org

1, 3, 3, 8, 9, 8, 21, 24, 24, 21, 55, 63, 64, 63, 55, 144, 165, 168, 168, 165, 144, 377, 432, 440, 441, 440, 432, 377, 987, 1131, 1152, 1155, 1155, 1152, 1131, 987, 2584, 2961, 3016, 3024, 3025, 3024, 3016, 2961, 2584, 6765, 7752, 7896, 7917, 7920, 7920, 7917, 7896, 7752, 6765
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 07 2008

Keywords

Comments

Row sums are {1, 6, 25, 90, 300, 954, 2939, 8850, 26195, 76500, ...}.
It can be noticed that the interior of the triangle is relatively "flat", which is a smaller variation than in most symmetrical triangles of this type.
16*T(n,k) is the number of Boolean (equivalently, lattice, modular lattice, distributive lattice) intervals of the form [s_{k+1},w] in the Bruhat order on S_{n+3}, for the simple reflection s_{k+1}. - Bridget Tenner, Jan 16 2020

Examples

			Triangle begins as:
    1;
    3,   3;
    8,   9,   8;
   21,  24,  24,  21;
   55,  63,  64,  63,  55;
  144, 165, 168, 168, 165, 144;
  377, 432, 440, 441, 440, 432, 377; ...
		

Crossrefs

Cf. A001906.

Programs

  • Magma
    b:= func< n| n eq 0 select 1 else Fibonacci(2*n) >; [[b(n-k+1)*b(k+1): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Apr 06 2019
    
  • Mathematica
    b[0]=1; b[n_]:= Sum[k*b[n-k], {k, 1, n}];
    Table[b[n-m+1]*b[m+1], {n, 0, 10}, {m, 0, n}]//Flatten
    f[n_]:= If[n == 0, 1, Fibonacci[2*n]]; Table[f[n-k+1]*f[k+1], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Apr 06 2019 *)
  • PARI
    {b(n) = if(n==0, 1, fibonacci(2*n))};
    for(n=0, 10, for(k=0, n, print1(b(n-k+1)*b(k+1), ", "))) \\ G. C. Greubel, Apr 06 2019
    
  • Sage
    @CachedFunction
    def b(n):
        if n==0: return 1
        return fibonacci(2*n)
    [[b(n-k+1)*b(k+1) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Apr 06 2019

Formula

Let b(n) = Sum_{k=1..n} k*b(n - k), then T(n, m) = b(n-m+1)*b(m+1).
Alternatively, let f(n) = Fibonacci(2*n) with f(0)=1, then T(n, k) = f(n-k+1)*f(k+1). - G. C. Greubel, Apr 06 2019

Extensions

Edited by G. C. Greubel, Apr 02 2019