cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141683 a(n) = Sum_{k=1..n} b(k)*a(n - k) for n >= 1, where b(n) = b(n-2) + b(n-3) for n >= 3 with b(0) = 0 and b(1) = b(2) = 1.

Original entry on oeis.org

1, 1, 2, 4, 9, 19, 41, 88, 189, 406, 872, 1873, 4023, 8641, 18560, 39865, 85626, 183916, 395033, 848491, 1822473, 3914488, 8407925, 18059374, 38789712, 83316385, 178955183, 384377665, 825604416, 1773314929, 3808901426
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 07 2008

Keywords

Comments

Essentially the same as A141015. - R. J. Mathar, Sep 14 2008

Crossrefs

Programs

  • Magma
    m:=35; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(1-x^2-x^3)/(1-x-2*x^2-x^3))); // G. C. Greubel, Jun 05 2018
  • Mathematica
    (* b = A000931 *)
    b[0]=0; b[1]=1; b[2]=1; b[n_]:= b[n]= b[n-2] + b[n-3];
    a[1]=1; a[n_]:= a[n]= Sum[b[k]*a[n-k], {k,n-1}];
    Table[a[n], {n, 35}]
    (* or *)
    LinearRecurrence[{1, 2, 1}, {1, 1, 2, 4}, 31] (* Georg Fischer, Mar 23 2019 *)
  • PARI
    x='x+O('x^35); Vec(x*(1-x^2-x^3)/(1-x-2*x^2-x^3)) \\ G. C. Greubel, Jun 05 2018
    

Formula

a(n) = Sum_{k=1..n} b(k)*a(n - k) for n >= 1, where b(n) = b(n-2) + b(n-3) for n >= 3 with b(0) = 0 and b(1) = b(2) = 1. [That is, b(n) = A000931(n+4) = A078027(n+6) = A134816(n) = A182097(n+1). - Petros Hadjicostas, Aug 09 2020]
From Colin Barker, Feb 01 2012: (Start)
a(n) = a(n-1) + 2*a(n-2) + a(n-3), n > 4.
G.f.: x*(1 - x^2 - x^3)/(1 - x - 2*x^2 - x^3). (End)
a(n) = A000930(2*n - 3) for n >= 3. - Georg Fischer, Mar 23 2019