A120292 Absolute value of numerator of determinant of n X n matrix with elements M[i,j] = prime(i)/(1+prime(i)) if i=j and 1 otherwise.
2, 1, 1, 5, 1, 23, 1, 1, 1, 23, 17, 13, 5, 1, 1, 1, 1, 37, 293, 47, 61, 29, 1, 29, 271, 593, 43, 233, 29, 811, 1, 941, 101, 1, 1, 1231, 131, 29, 1, 521, 1, 109, 1, 149, 509, 89, 59, 107, 617, 1, 1, 47, 173, 3067, 47, 1, 3463, 3599, 89, 431, 4021, 521, 2161, 2239, 103, 1, 1
Offset: 1
Links
- Alexander Adamchuk, Jul 04 2008, Table of n, a(n) for n = 1..282
Programs
-
Mathematica
Abs[Numerator[Table[Det[DiagonalMatrix[Table[Prime[i]/(Prime[i]+1)-1,{i,1,n}]]+1],{n,1,60}]]] Table[Numerator[Abs[(1 - Sum[Prime[k] + 1,{k, 1, n}])/Product[Prime[k] + 1, {k, 1, n}] ]],{n,1,282}]
-
PARI
a(n)=abs(numerator(matdet(matrix(n,n,i,j,if(i==j,prime(i)/(1+prime(i)),1))))) \\ Charles R Greathouse IV, Feb 07 2013
Comments