A141849 Primes congruent to 1 mod 11.
23, 67, 89, 199, 331, 353, 397, 419, 463, 617, 661, 683, 727, 859, 881, 947, 991, 1013, 1123, 1277, 1321, 1409, 1453, 1607, 1783, 1871, 2003, 2069, 2113, 2179, 2267, 2311, 2333, 2377, 2399, 2531, 2663, 2707, 2729, 2861, 2927, 2971, 3037, 3169, 3191, 3257
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Crossrefs
Prime sequences A# (k,r) of the form k*n+r with 0 <= r <= k-1 (i.e., primes == r (mod k), or primes p with p mod k = r) and gcd(r,k)=1: A000040 (1,0), A065091 (2,1), A002476 (3,1), A003627 (3,2), A002144 (4,1), A002145 (4,3), A030430 (5,1), A045380 (5,2), A030431 (5,3), A030433 (5,4), A002476 (6,1), A007528 (6,5), A140444 (7,1), A045392 (7,2), A045437 (7,3), A045471 (7,4), A045458 (7,5), A045473 (7,6), A007519 (8,1), A007520 (8,3), A007521 (8,5), A007522 (8,7), A061237 (9,1), A061238 (9,2), A061239 (9,4), A061240 (9,5), A061241 (9,7), A061242 (9,8), A030430 (10,1), A030431 (10,3), A030432 (10,7), A030433 (10,9), this sequence (11,1), A090187 (11,2), A141850 (11,3), A141851 (11,4), A141852 (11,5), A141853 (11,6), A141854 (11,7), A141855 (11,8), A141856 (11,9), A141857 (11,10), A068228 (12,1), A040117 (12,5), A068229 (12,7), A068231 (12,11).
Cf. A034694 (smallest prime == 1 (mod n)).
Cf. A038700 (smallest prime == n-1 (mod n)).
Cf. A038026 (largest possible value of smallest prime == r (mod n)).
Programs
-
GAP
Filtered([1..4000],n->n mod 11=1 and IsPrime(n)); # Muniru A Asiru, Apr 19 2018
-
Magma
[ p: p in PrimesUpTo(5000) | p mod 11 eq 1 ]; // Vincenzo Librandi, Apr 19 2011
-
Maple
a:=select(n->isprime(n) and modp(n,11)=1,[$1..4000]); # Muniru A Asiru, Apr 19 2018
-
Mathematica
Select[Range[1,10000,11],PrimeQ] (* Vladimir Joseph Stephan Orlovsky, May 18 2011 *)
-
PARI
is(n)=isprime(n) && n%11==1 \\ Charles R Greathouse IV, Jul 01 2016
-
PARI
forstep(n=2, 1e3, 2, if(isprime(p=11*n+1), print1(p, ", "))); \\ Altug Alkan, Apr 19 2018
Formula
a(n) ~ 10n log n. - Charles R Greathouse IV, Jul 02 2016
Comments