cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A244765 Prime numbers ending in the prime number 19.

Original entry on oeis.org

19, 419, 619, 719, 919, 1019, 1319, 1619, 2719, 2819, 3019, 3119, 3319, 3719, 3919, 4019, 4219, 4519, 4919, 5119, 5419, 5519, 6619, 6719, 7019, 7219, 7919, 8219, 8419, 8719, 8819, 9319, 9419, 9619, 9719, 11119, 11519, 11719, 12119, 12619, 12919, 13219
Offset: 1

Views

Author

Vincenzo Librandi, Jul 06 2014

Keywords

Comments

Also primes of the form 100*n+19. Subsequence of A141887, A141942.

Crossrefs

Cf. similar sequences listed in A244763.

Programs

  • Magma
    [n: n in PrimesUpTo(16000) | n mod 100 eq 19];
    
  • Mathematica
    Select[Prime[Range[5, 6000]], Take[IntegerDigits[#], -2]=={1, 9} &]
    Select[Prime[Range[1600]],Mod[#,100]==19&] (* Harvey P. Dale, Jul 29 2018 *)
  • PARI
    select(x->(x % 100)==19, primes(2000)) \\ Michel Marcus, Jul 06 2014

A244772 Prime numbers ending in the prime number 59.

Original entry on oeis.org

59, 359, 659, 859, 1259, 1459, 1559, 1759, 2459, 2659, 3259, 3359, 3559, 3659, 4159, 4259, 4759, 5059, 5659, 6359, 6659, 6959, 7159, 7459, 7559, 7759, 8059, 9059, 9859, 10159, 10259, 10459, 10559, 10859, 11059, 11159, 11959, 12659, 12959, 13159, 13259
Offset: 1

Views

Author

Vincenzo Librandi, Jul 07 2014

Keywords

Comments

Also primes of the form 100*n+59. Subsequence of A141887, A141934.

Crossrefs

Cf. similar sequences listed in A244763.

Programs

  • Magma
    [n: n in PrimesUpTo(14000) | n mod 100 eq 59];
    
  • Mathematica
    Select[Prime[Range[5, 6000]], Take[IntegerDigits[#], -2]=={5, 9} &]
  • PARI
    select(x->(x % 100)==59, primes(2000)) \\ Michel Marcus, Jul 07 2014

A244775 Prime numbers ending in the prime number 79.

Original entry on oeis.org

79, 179, 379, 479, 1279, 1579, 1879, 1979, 2179, 2579, 2879, 3079, 3779, 4079, 4679, 5179, 5279, 5479, 5779, 5879, 6079, 6379, 6679, 6779, 7079, 7879, 8179, 8779, 9479, 9679, 10079, 10979, 11279, 11579, 11779, 12379, 12479, 12979, 13679, 13879
Offset: 1

Views

Author

Vincenzo Librandi, Jul 07 2014

Keywords

Comments

Also primes of the form 100*n+79. Subsequence of A141887, A141930.

Crossrefs

Cf. similar sequences listed in A244763.

Programs

  • Magma
    [n: n in PrimesUpTo(14000) | n mod 100 eq 79];
    
  • Mathematica
    Select[Prime[Range[5, 6000]], Take[IntegerDigits[#], -2]=={7, 9} &]
    Select[Prime[Range[2000]],Mod[#,100]==79&] (* Harvey P. Dale, Nov 29 2017 *)
  • PARI
    select(x->(x % 100)==79, primes(2000)) \\ Michel Marcus, Jul 07 2014

A216257 a(n) = 840*n^2 - 23100*n + 86861.

Original entry on oeis.org

86861, 64601, 44021, 25121, 7901, -7639, -21499, -33679, -44179, -52999, -60139, -65599, -69379, -71479, -71899, -70639, -67699, -63079, -56779, -48799, -39139, -27799, -14779, -79, 16301, 34361, 54101, 75521, 98621, 123401, 149861, 178001, 207821, 239321, 272501
Offset: 0

Views

Author

Arkadiusz Wesolowski, Mar 15 2013

Keywords

Comments

|a(n)| are distinct primes for 0 <= n <= 32.
The values of this polynomial are never divisible by a prime less than 79.
All terms are congruent to 1 (mod 20).

Crossrefs

Programs

  • Magma
    [ 840*n^2-23100*n+86861 : n in [0..34]];
    
  • Maple
    seq(840*n^2-23100*n+86861, n=0..34);
  • Mathematica
    Table[840*n^2 - 23100*n + 86861, {n, 0, 34}]
  • PARI
    for(n=0, 34, print1(840*n^2-23100*n+86861, ", "))

Formula

G.f.: (86861 - 195982*x + 110801*x^2)/(1-x)^3.
From Elmo R. Oliveira, Feb 10 2025: (Start)
E.g.f.: exp(x)*(86861 - 22260*x + 840*x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A306431 Least number x > 1 such that n*x divides 1 + Sum_{k=1..x-1} k^(x-1).

Original entry on oeis.org

2, 3, 13, 7, 19, 31, 41, 31, 13, 19, 43, 31, 23, 83, 139, 31, 61, 67, 113, 79, 251, 43, 19, 31, 199, 23, 13, 167, 53, 139, 83, 127, 157, 67, 293, 431, 443, 151, 103, 79, 61, 251, 113, 47, 337, 19, 179, 31, 41, 199, 67, 23, 19, 499, 181, 367, 607, 139, 257, 359
Offset: 1

Views

Author

Paolo P. Lava, Apr 05 2019

Keywords

Comments

If n = 1, all the solutions of x | 1 + Sum_{k=1..x-1} k^(x-1) should be prime numbers, according to Giuga's conjecture.
If n*x | 1 + Sum_{k=1..x-1} k^(x-1), then certainly x does, so Giuga's conjecture would say x must be prime. Similarly if x^n divides it, so does x, so again Giuga would say x is prime. - Robert Israel, Apr 26 2019
E.g., the first solution for x^2 | 1 + Sum_{k=1..x-1} k^(x-1) is x = 1277, that is prime.

Examples

			a(4) = 7 because (1 + 1^6 + 2^6 + 3^6 + 4^6 + 5^6 + 6^6) / (4*7) = 67172 / 28 = 2399 and it is the least prime to have this property.
		

Crossrefs

Cf. A191677. All the solutions for n = m: A000040 (m=1), A002145 (m=2), A007522 (m=4), A127576 (m=8), A141887 (m=10), A127578 (m=16), A142198 (m=20), A127579 (m=32), A095995 (m=50).

Programs

  • Maple
    P:=proc(j) local k,n; for n from 2 to 10^6 do
    if frac((add(k^(n-1),k=1..n-1)+1)/(j*n))=0
    then RETURN(n); break; fi; od; end: seq(P(i),i=1..60);
  • Mathematica
    a[n_] := For[x = 2, True, x++, If[Divisible[1+Sum[k^(x-1), {k, x-1}], n x], Return[x]]];
    Array[a, 60] (* Jean-François Alcover, Oct 16 2020 *)
  • PARI
    a(n) = my(x=2); while (((1 + sum(k=1, x-1, k^(x-1))) % (n*x)), x++); x; \\ Michel Marcus, Apr 27 2019

Formula

Least solution of n*x | 1 + Sum_{k=1..x-1} k^(x-1), for n = 1, 2, 3, ...
Showing 1-5 of 5 results.