A141905 Triangle read by rows, T(n, k) = binomial(n, k)*A052509(n, k) for 0 <= k <= n.
1, 1, 1, 1, 4, 1, 1, 9, 6, 1, 1, 16, 24, 8, 1, 1, 25, 70, 40, 10, 1, 1, 36, 165, 160, 60, 12, 1, 1, 49, 336, 525, 280, 84, 14, 1, 1, 64, 616, 1456, 1120, 448, 112, 16, 1, 1, 81, 1044, 3528, 3906, 2016, 672, 144, 18, 1, 1, 100, 1665, 7680, 11970, 8064, 3360, 960, 180, 20, 1
Offset: 0
Examples
Triangle begins as: [0] 1; [1] 1, 1; [2] 1, 4, 1; [3] 1, 9, 6, 1; [4] 1, 16, 24, 8, 1; [5] 1, 25, 70, 40, 10, 1; [6] 1, 36, 165, 160, 60, 12, 1; [7] 1, 49, 336, 525, 280, 84, 14, 1; [8] 1, 64, 616, 1456, 1120, 448, 112, 16, 1; [9] 1, 81, 1044, 3528, 3906, 2016, 672, 144, 18, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
[Binomial(n,k)*(&+[Binomial(n-k,j): j in [0..k]]): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 29 2021
-
Maple
A052509 := proc(n, k) option remember: if k = 0 or k = n then 1 else A052509(n-1, k) + A052509(n-2, k-1) fi end: T := (n, k) -> binomial(n, k)*A052509(n, k): seq(seq(T(n, k), k=0..n), n=0..10); # Peter Luschny, Nov 26 2021
-
Mathematica
T[n_, k_]:= Sum[n!/((n-k-j)!*j!*k!), {j,0,k}]; Table[T[n, k], {n, 0, 10}, {k,0,n}] // Flatten
-
Sage
flatten([[binomial(n,k)*sum(binomial(n-k,j) for j in (0..k)) for k in [0..n]] for n in [0..12]]) # G. C. Greubel, Mar 29 2021
Formula
T(n, k) = Sum_{j=0..k} n!/((n - k - j)!*j!*k!).
G.f.: (2*x)/((3*x - 1)*sqrt(-4*x^2*y + x^2 - 2*x + 1) - 4*x^2*y + x^2 - 2*x +1). - Vladimir Kruchinin, Oct 05 2020
T(n, k) = binomial(n, k)*hypergeom([-k, -n + k], [-k], -1). - Peter Luschny, Nov 28 2021
Extensions
Edited by G. C. Greubel, Mar 29 2021
New name by Peter Luschny, Nov 26 2021
Comments