cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A214360 Primes congruent to 23 modulo 3120613860.

Original entry on oeis.org

23, 3120613883, 6241227743, 9361841603, 12482455463, 15603069323, 18723683183, 21844297043, 24964910903, 28085524763, 34326752483, 43688594063, 62412277223, 115462712843, 124824554423, 156030693023, 159151306883, 171633762323, 180995603903, 196598673203
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 13 2012

Keywords

Comments

A211889(9) = 3120613860;
the first 10 terms constitute row 9 of triangle A211890, an arithmetic progression of 10 primes.

Crossrefs

Cf. A010051.
Sequences of numbers congruent 23 modulo m: A134517 m=24, A141945 m=25, A140375 m=26, A141963 m=27, A141974 m=28, A141999 m=29, A132235 m=30, A142027 m=31, A142044 m=32, A142062 m=33, A142091 m=35, A142107 m=36, A142132 m=37, A142173 m=39, A142192 m=40, A142220 m=41, A142244 m=42, A142272 m=43, A142302 m=44, A142324 m=45, A142374 m=47, A142405 m=48, A142433 m=49, A142490 m=51, A142518 m=52, A142553 m=53, A142617 m=55, A142650 m=56, A142679 m=57, A142750 m=59, A142790 m=60, A142821 m=61, A142902 m=63, A142935 m=64, A140844 m=210.

Programs

  • Haskell
    a214360 n = a214360_list !! (n-1)
    a214360_list = [x | k <- [0..], let x = 3120613860*k+23, a010051' x == 1]
    
  • Maple
    select(isprime,[seq(23+i*3120613860,i=0..1000)]); # Robert Israel, Jun 07 2015
  • Mathematica
    Select[Range[23, 2 10^11, 3120613860], PrimeQ] (* Vincenzo Librandi, Jun 07 2015 *)
  • PARI
    is(n)=isprime(n) && n%3120613860==23 \\ Charles R Greathouse IV, Jul 02 2016

Formula

a(n) ~ 658414080n log n. - Charles R Greathouse IV, Jul 02 2016

A244774 Prime numbers ending in the prime number 73.

Original entry on oeis.org

73, 173, 373, 673, 773, 1373, 1873, 1973, 2273, 2473, 3373, 3673, 4073, 4273, 4373, 4673, 4973, 5273, 5573, 6073, 6173, 6373, 6473, 6673, 7573, 7673, 7873, 8273, 8573, 9173, 9473, 9973, 10273, 10973, 11173, 11273, 12073, 12373, 12473, 12973, 13873
Offset: 1

Views

Author

Vincenzo Librandi, Jul 07 2014

Keywords

Comments

Also primes of the form 100*k+73. Subsequence of A141885, A141945.

Crossrefs

Cf. similar sequences listed in A244763.

Programs

  • Magma
    [n: n in PrimesUpTo(14000) | n mod 100 eq 73];
    
  • Mathematica
    Select[Prime[Range[5, 6000]], Take[IntegerDigits[#], -2]=={7, 3} &]
  • PARI
    select(x->(x % 100)==73, primes(2000)) \\ Michel Marcus, Jul 07 2014

A244766 Prime numbers ending in the prime number 23.

Original entry on oeis.org

23, 223, 523, 823, 1123, 1223, 1423, 1523, 1723, 1823, 2423, 3023, 3323, 3623, 3823, 3923, 4423, 4523, 4723, 5023, 5323, 5623, 5923, 6323, 6823, 7523, 7723, 7823, 8123, 8423, 8623, 8923, 9323, 9623, 9923, 10223, 10723, 11423, 11923, 12323, 12823, 12923
Offset: 1

Views

Author

Vincenzo Librandi, Jul 06 2014

Keywords

Comments

Also primes of the form 100*n+23. Subsequence of A105854, A141945.

Crossrefs

Cf. similar sequences listed in A244763.

Programs

  • Magma
    [n: n in PrimesUpTo(16000) | n mod 100 eq 23];
    
  • Mathematica
    Select[Prime[Range[5, 6000]], Take[IntegerDigits[#], -2]=={2, 3} &]
  • PARI
    select(x->(x % 100)==23, primes(2000)) \\ Michel Marcus, Jul 06 2014

A256177 Primes congruent to {8, 13, 18, 23} mod 25.

Original entry on oeis.org

13, 23, 43, 73, 83, 113, 163, 173, 193, 223, 233, 263, 283, 293, 313, 373, 383, 433, 443, 463, 523, 563, 593, 613, 643, 673, 683, 733, 743, 773, 823, 863, 883, 983, 1013, 1033, 1063, 1093, 1123, 1163, 1193, 1213, 1223, 1283, 1373, 1423, 1433, 1483, 1493
Offset: 1

Views

Author

Arkadiusz Wesolowski, Mar 18 2015

Keywords

Comments

Union of A141933, A141937, A141941, and A141945.
These primes cannot be written as the sum of a triangular number and a square.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1493) | p mod 25 in {8, 13, 18, 23}];
  • Mathematica
    Select[Prime@Range[283], MemberQ[{8, 13, 18, 23}, Mod[#, 25]] &]
Showing 1-4 of 4 results.