cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A142114 Primes congruent to 5 mod 37.

Original entry on oeis.org

5, 79, 227, 449, 523, 967, 1559, 2003, 2447, 2521, 3187, 3557, 3631, 3779, 3853, 4001, 4297, 4519, 4889, 5333, 5407, 5851, 6073, 6221, 6961, 7109, 7331, 8219, 8293, 8663, 8737, 9181, 9403, 9551, 10069, 10513, 10883, 10957, 11549, 12289, 12437, 12511, 12659
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

a(n) ~ 36n log n. - Charles R Greathouse IV, Jul 02 2016

A142113 Primes congruent to 4 mod 37.

Original entry on oeis.org

41, 263, 337, 929, 1151, 1373, 1447, 1669, 2039, 2113, 2557, 2927, 3001, 3371, 3593, 3889, 4111, 4259, 4481, 4703, 4999, 5147, 5443, 5591, 5813, 6257, 6553, 6701, 6997, 7219, 7589, 8329, 8699, 9439, 9587, 9661, 9883, 10253, 10771, 10993, 11437, 11807
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

a(n) ~ 36n log n. - Charles R Greathouse IV, Jul 02 2016

A142115 Primes congruent to 6 mod 37.

Original entry on oeis.org

43, 191, 487, 709, 857, 1153, 1301, 1523, 1597, 2411, 2633, 2707, 3299, 3373, 4261, 4409, 4483, 5297, 5519, 5741, 6037, 6481, 6703, 7369, 7517, 7591, 8627, 8849, 8923, 9293, 9811, 10181, 10477, 10847, 11069, 11587, 12253, 12401, 12697, 12919, 13807, 14029
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

a(n) ~ 36n log n. - Charles R Greathouse IV, Jul 02 2016

A216970 Primes congruent to 1 mod 37.

Original entry on oeis.org

149, 223, 593, 1259, 1481, 1777, 1999, 2221, 2591, 2887, 3109, 3257, 3331, 3701, 3923, 4219, 4441, 4663, 5107, 5477, 6143, 6217, 6661, 6883, 7253, 7549, 7919, 7993, 8363, 8807, 9029, 9103, 9473, 9547, 9769, 10139, 10657, 11027, 11471, 12211, 12433, 13099
Offset: 1

Views

Author

Bruno Berselli, Sep 21 2012

Keywords

Comments

Coincides for the first 38 terms with A059223 (primes p such that x^37 = 2 has no solution mod p), the first divergence is at the term 11471.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(14000) | IsOne(p mod 37)];
    
  • Mathematica
    Select[Prime[Range[1700]], Mod[#, 37] == 1 &]
    Select[Range[1, 14000, 37], PrimeQ]
  • PARI
    select(p->p%37==1,primes(10^4)) /* Joerg Arndt, Sep 21 2012 */
Showing 1-4 of 4 results.