A059223 Primes p such that x^37 = 2 has no solution mod p.
149, 223, 593, 1259, 1481, 1777, 1999, 2221, 2591, 2887, 3109, 3257, 3331, 3701, 3923, 4219, 4441, 4663, 5107, 5477, 6143, 6217, 6661, 6883, 7253, 7549, 7919, 7993, 8363, 8807, 9029, 9103, 9473, 9547, 9769, 10139, 10657, 11027, 12211, 12433
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[p: p in PrimesUpTo(13000) | forall{x: x in ResidueClassRing(p) | x^37 ne 2}]; // Bruno Berselli, Sep 12 2012
-
Mathematica
Select[Prime[Range[PrimePi[12500]]], ! MemberQ[PowerMod[Range[#], 37, #], Mod[2, #]] &] (* T. D. Noe, Sep 12 2012 *) ok[p_]:= Reduce[Mod[x^37 - 2, p] == 0, x, Integers] == False; Select[Prime[Range[2000]], ok] (* Vincenzo Librandi, Sep 19 2012 *)
-
PARI
N=10^5; default(primelimit,N); ok(p, r, k)={ return ( (p==r) || (Mod(r,p)^((p-1)/gcd(k,p-1))==1) ); } forprime(p=2,N, if (! ok(p,2,37),print1(p,", "))); /* Joerg Arndt, Sep 21 2012 */
Comments