cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A142112 Primes congruent to 2 mod 37.

Original entry on oeis.org

2, 113, 409, 557, 631, 853, 1223, 1297, 1667, 1741, 1889, 2111, 2333, 2777, 2851, 2999, 3221, 3517, 3739, 5441, 5737, 6329, 6551, 7069, 7883, 8179, 8623, 9067, 9437, 9511, 9733, 10103, 10177, 10399, 11213, 11287, 11657, 11731, 11953, 12101, 12323, 12619
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Comments

2 and primes congruent to 39 mod 74. - Chai Wah Wu, Apr 29 2025

Crossrefs

Programs

Formula

a(n) ~ 36n log n. - Charles R Greathouse IV, Jul 02 2016

A049569 Primes p such that x^37 = 2 has a solution mod p.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281
Offset: 1

Views

Author

Keywords

Comments

Complement of A059223 relative to A000040. - Vincenzo Librandi, Sep 14 2012

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(300) | exists(t){x : x in ResidueClassRing(p) | x^37 eq 2}]; // Vincenzo Librandi, Sep 14 2012
    
  • Mathematica
    ok[p_]:= Reduce[Mod[x^37 - 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[100]], ok] (* Vincenzo Librandi, Sep 14 2012 *)
  • PARI
    N=10^4;  default(primelimit,N);
    ok(p, r, k)={ return ( (p==r) || (Mod(r,p)^((p-1)/gcd(k,p-1))==1) ); }
    forprime(p=2,N, if (ok(p,2,37),print1(p,", ")));
    /* Joerg Arndt, Sep 21 2012 */

A216970 Primes congruent to 1 mod 37.

Original entry on oeis.org

149, 223, 593, 1259, 1481, 1777, 1999, 2221, 2591, 2887, 3109, 3257, 3331, 3701, 3923, 4219, 4441, 4663, 5107, 5477, 6143, 6217, 6661, 6883, 7253, 7549, 7919, 7993, 8363, 8807, 9029, 9103, 9473, 9547, 9769, 10139, 10657, 11027, 11471, 12211, 12433, 13099
Offset: 1

Views

Author

Bruno Berselli, Sep 21 2012

Keywords

Comments

Coincides for the first 38 terms with A059223 (primes p such that x^37 = 2 has no solution mod p), the first divergence is at the term 11471.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(14000) | IsOne(p mod 37)];
    
  • Mathematica
    Select[Prime[Range[1700]], Mod[#, 37] == 1 &]
    Select[Range[1, 14000, 37], PrimeQ]
  • PARI
    select(p->p%37==1,primes(10^4)) /* Joerg Arndt, Sep 21 2012 */
Showing 1-3 of 3 results.