cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A142121 Primes congruent to 12 mod 37.

Original entry on oeis.org

197, 271, 419, 641, 863, 937, 1307, 1381, 1973, 2269, 2417, 2713, 2861, 3083, 3527, 3823, 4637, 4933, 5081, 5303, 5821, 6043, 6709, 6857, 7079, 7523, 8263, 8707, 8929, 9151, 9521, 9743, 9817, 10039, 10631, 10853, 11149, 11519, 11593, 12037, 12703, 13147, 13591
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

a(n) ~ 36n log n. - Charles R Greathouse IV, Jul 02 2016

A142122 Primes congruent to 13 mod 37.

Original entry on oeis.org

13, 383, 457, 827, 1049, 1123, 1493, 1567, 1789, 2011, 2381, 2677, 3121, 3343, 3491, 4157, 4231, 5119, 5563, 5711, 6007, 6229, 6451, 6599, 6673, 7043, 7487, 7561, 8597, 8819, 8893, 9041, 9337, 9781, 9929, 10151, 10891, 11113, 11261, 11483, 11779, 11927
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

a(n) ~ 36n log n. - Charles R Greathouse IV, Jul 02 2016

A142123 Primes congruent to 14 mod 37.

Original entry on oeis.org

199, 347, 421, 569, 643, 1013, 1087, 1531, 1753, 1901, 2789, 3011, 3307, 3529, 3677, 4639, 4787, 4861, 5009, 5231, 5527, 5749, 5897, 6563, 6637, 7229, 7451, 7673, 8117, 8191, 8783, 9227, 9967, 10337, 10559, 10781, 11003, 11299, 11447, 11743, 12113, 12409
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Crossrefs

Programs

Formula

a(n) ~ 36n log n. - Charles R Greathouse IV, Jul 02 2016

A322923 Primes of the form 3*p + 4, where p is a prime.

Original entry on oeis.org

13, 19, 37, 43, 61, 73, 97, 127, 163, 181, 223, 241, 271, 307, 313, 331, 397, 421, 457, 523, 541, 547, 577, 601, 673, 691, 727, 757, 811, 853, 883, 937, 997, 1051, 1063, 1123, 1153, 1171, 1231, 1297, 1303, 1321, 1531, 1567, 1627, 1693, 1783, 1801
Offset: 1

Views

Author

Vincenzo Librandi, Mar 12 2019

Keywords

Crossrefs

Programs

  • GAP
    P:=Filtered([1..1000],IsPrime);;
    a:=Filtered(List(P,i->3*i+4),k->IsPrime(k)); # Muniru A Asiru, Mar 23 2019
    
  • Magma
    [a: p in PrimesUpTo(600) | IsPrime(a) where a is 3*p+4];
    
  • Maple
    select(isprime,[3*ithprime(p)+4$p=1..120]); # Muniru A Asiru, Mar 23 2019
  • Mathematica
    Select[Table[p=Prime[n];3p+4,{n,85}],PrimeQ]
  • PARI
    terms(n) = my(x=0, i=0); forprime(p=1, , if(i >= n, break); x=3*p+4; if(ispseudoprime(x), print1(x, ", "); i++))
    /* Print initial 50 terms as follows: */
    terms(50) \\ Felix Fröhlich, Mar 23 2019
Showing 1-4 of 4 results.