A142239 Denominators of continued fraction convergents to sqrt(3/2).
1, 4, 9, 40, 89, 396, 881, 3920, 8721, 38804, 86329, 384120, 854569, 3802396, 8459361, 37639840, 83739041, 372596004, 828931049, 3688320200, 8205571449, 36510605996, 81226783441, 361417739760, 804062262961, 3577666791604, 7959395846169, 35415250176280
Offset: 0
Examples
The initial convergents are 1, 5/4, 11/9, 49/40, 109/89, 485/396, 1079/881, 4801/3920, 10681/8721, 47525/38804, 105731/86329, ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (0,10,0,-1).
Crossrefs
Programs
-
Magma
I:=[1,4,9,40]; [n le 4 select I[n] else 10*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Feb 01 2014
-
Maple
with(numtheory): cf := cfrac (sqrt(3)/sqrt(2),100): [seq(nthnumer(cf,i), i=0..50)]; [seq(nthdenom(cf,i), i=0..50)]; [seq(nthconver(cf,i), i=0..50)];
-
Mathematica
Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[3/2], n]]], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Jun 23 2011 *) Denominator[Convergents[Sqrt[3/2], 30]] (* Bruno Berselli, Nov 11 2013 *)
Formula
G.f.'s for numerators and denominators are -(1+5*x+x^2-x^3)/(-1-x^4+10*x^2) and -(1+4*x-x^2)/(-1-x^4+10*x^2).
a(n) = 10*a(n-2) - a(n-4) for n > 3. - Vincenzo Librandi, Feb 01 2014
From: Rogério Serôdio, Apr 02 2018: (Start)
Recurrence formula: a(n) = (3-(-1)^n)*a(n-1) + a(n-2), a(0) = 1, a(1) = 4;
Some properties:
(1) a(n)^2 - a(n-2)^2 = (3-(-1)^n)*a(2*n-1), for n > 1;
(2) a(2*n+1) = a(n)*(a(n+1) + a(n-1)), for n > 0;
(3) a(2*n) = A041007(2*n);
(4) a(2*n+1) = 2*A041007(2*n+1). (End)
Comments