A142465 Triangle T(n,m) read by rows: T(n,m) = Product_{i=0..5} binomial(n+i,m)/binomial(m+i,m).
1, 1, 1, 1, 7, 1, 1, 28, 28, 1, 1, 84, 336, 84, 1, 1, 210, 2520, 2520, 210, 1, 1, 462, 13860, 41580, 13860, 462, 1, 1, 924, 60984, 457380, 457380, 60984, 924, 1, 1, 1716, 226512, 3737448, 9343620, 3737448, 226512, 1716, 1, 1, 3003, 736164, 24293412, 133613766, 133613766, 24293412, 736164, 3003, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, 7, 1; 1, 28, 28, 1; 1, 84, 336, 84, 1; 1, 210, 2520, 2520, 210, 1; 1, 462, 13860, 41580, 13860, 462, 1; 1, 924, 60984, 457380, 457380, 60984, 924, 1; 1, 1716, 226512, 3737448, 9343620, 3737448, 226512, 1716, 1; 1, 3003, 736164, 24293412, 133613766, 133613766, 24293412, 736164, 3003, 1;
Links
- Seiichi Manyama, Rows n = 0..139, flattened
- Johann Cigler, Pascal triangle, Hoggatt matrices, and analogous constructions, arXiv:2103.01652 [math.CO], 2021.
- Johann Cigler, Some observations about Hoggatt triangles, Universität Wien (Austria, 2021).
Crossrefs
Programs
-
Magma
A142465:= func< n,k | (&*[Binomial(n+j,k)/Binomial(k+j,k): j in [0..5]]) >; [A142465(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 13 2022
-
Maple
A142465 := proc(n,m) mul(binomial(n+i,m)/binomial(m+i,m),i=0..5) ; end proc; # R. J. Mathar, Mar 22 2013
-
Mathematica
T[n_, k_]:= Product[Binomial[n+j, k]/Binomial[k+j, k], {j,0,5}]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten
-
PARI
T(n, k) = prod(j=0, 5, binomial(n+j, k)/binomial(k+j, k)); \\ Seiichi Manyama, Apr 01 2021
-
SageMath
def A142465(n,k): return product(binomial(n+j,k)/binomial(k+j,k) for j in (0..5)) flatten([[A142465(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Nov 13 2022
Extensions
Edited by the Associate Editors of the OEIS, May 17 2009
Comments