cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A142467 Triangle T(n,m) read by rows: T(n,m) = Product_{i=0..6} binomial(n+i,m)/binomial(m+i,m).

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 36, 36, 1, 1, 120, 540, 120, 1, 1, 330, 4950, 4950, 330, 1, 1, 792, 32670, 108900, 32670, 792, 1, 1, 1716, 169884, 1557270, 1557270, 169884, 1716, 1, 1, 3432, 736164, 16195608, 44537922, 16195608, 736164, 3432, 1
Offset: 0

Views

Author

Roger L. Bagula, Sep 20 2008

Keywords

Comments

Triangle of generalized binomial coefficients (n,k)A342889.%20-%20_N.%20J.%20A.%20Sloane">7; cf. A342889. - _N. J. A. Sloane, Apr 03 2021

Examples

			Triangle begins as:
  1;
  1,     1;
  1,     8,       1;
  1,    36,      36,         1;
  1,   120,     540,       120,         1;
  1,   330,    4950,      4950,       330,         1;
  1,   792,   32670,    108900,     32670,       792,         1;
  1,  1716,  169884,   1557270,   1557270,    169884,      1716,       1;
  1,  3432,  736164,  16195608,  44537922,  16195608,    736164,    3432,    1;
  1,  6435, 2760615, 131589315, 868489479, 868489479, 131589315, 2760615, 6435, 1;
		

Crossrefs

Cf. A001263, A005365 (row sums), A056939, A056940, A056941.
Triangles of generalized binomial coefficients (n,k)_m (or generalized Pascal triangles) for m = 1,...,12: A007318 (Pascal), A001263, A056939, A056940, A056941, A142465, A142467, A142468, A174109, A342889, A342890, A342891.

Programs

  • Magma
    [(&*[Binomial(n+j,k)/Binomial(k+j,k): j in [0..6]]): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 13 2022
    
  • Mathematica
    T[n_, k_]:= Product[Binomial[n+j, k]/Binomial[k+j, k], {j,0,6}];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Nov 13 2022 *)
  • PARI
    T(n, k) = prod(j=0, 6, binomial(n+j, k)/binomial(k+j, k)); \\ Seiichi Manyama, Apr 01 2021
    
  • SageMath
    def A142467(n,k): return product(binomial(n+j,k)/binomial(k+j,k) for j in (0..6))
    flatten([[A142467(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Nov 13 2022

Formula

T(n,m) = A142465(n,m)*binomial(n+6,m)/binomial(m+6,m).
Sum_{k=0..n} T(n, k) = A005365(n).

Extensions

Edited by the Associate Editors of the OEIS, May 17 2009