cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A142590 First trisection of A061037 (Balmer line series of the hydrogen atom).

Original entry on oeis.org

0, 21, 15, 117, 12, 285, 99, 525, 42, 837, 255, 1221, 90, 1677, 483, 2205, 156, 2805, 783, 3477, 240, 4221, 1155, 5037, 342, 5925, 1599, 6885, 462, 7917, 2115, 9021, 600, 10197, 2703, 11445, 756, 12765, 3363, 14157, 930, 15621, 4095, 17157, 1122, 18765, 4899, 20445
Offset: 0

Views

Author

Paul Curtz, Sep 22 2008

Keywords

Comments

All terms are multiples of 3.

Crossrefs

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(3*x*(-15*x^8 -18*x^5 -74*x^4 -39*x^2 -5*x-7 -4*x^3 +x^10 -2*x^7 -x^9 -58*x^6)/((x-1)^3*(1+x)^3*(x^2+1)^3))); // G. C. Greubel, Sep 19 2018
  • Mathematica
    Table[Numerator[1/4 - 1/#^2] &[2 + 3 n], {n, 0, 47}] (* Michael De Vlieger, Apr 02 2017 *)
    CoefficientList[Series[3*x*(-15*x^8 -18*x^5 -74*x^4 -39*x^2 -5*x-7 -4*x^3 +x^10 -2*x^7 -x^9 -58*x^6)/ ((x-1)^3*(1+x)^3*(x^2+1)^3), {x, 0, 50}], x] (* G. C. Greubel, Sep 19 2018 *)
  • PARI
    my(x='x+O('x^50)); concat([0], Vec(3*x*(-15*x^8 -18*x^5 -74*x^4 -39*x^2 -5*x-7 -4*x^3 +x^10 -2*x^7 -x^9 -58*x^6)/((x-1)^3*(1+x)^3*(x^2+1)^3))) \\ G. C. Greubel, Sep 19 2018
    

Formula

a(n) = A061037(2+3n).
a(n) mod 9 = 3*A010872(n).
G.f.: 3*x*(-15*x^8 -18*x^5 -74*x^4 -39*x^2 -5*x-7 -4*x^3 +x^10 -2*x^7 -x^9 -58*x^6)/ ((x-1)^3*(1+x)^3*(x^2+1)^3). - R. J. Mathar, Sep 22 2008
a(n) = 3*n*(3*n+4)*(37-27*cos(n*Pi)-6*cos(n*Pi/2))/64. - Luce ETIENNE, Mar 31 2017
Sum_{n>=1} 1/a(n) = 5/4 - 5*Pi/(48*sqrt(3)) - 11*log(3)/16. - Amiram Eldar, Sep 11 2022

Extensions

Edited and extended by R. J. Mathar, Sep 22 2008