cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A142705 Numerator of 1/4 - 1/(2n)^2.

Original entry on oeis.org

0, 3, 2, 15, 6, 35, 12, 63, 20, 99, 30, 143, 42, 195, 56, 255, 72, 323, 90, 399, 110, 483, 132, 575, 156, 675, 182, 783, 210, 899, 240, 1023, 272, 1155, 306, 1295, 342, 1443, 380, 1599, 420, 1763, 462, 1935, 506, 2115, 552, 2303, 600, 2499, 650, 2703, 702
Offset: 1

Views

Author

Paul Curtz, Sep 24 2008

Keywords

Comments

Read modulo 10 (the last digits), a sequence with period length 10 results: 0, 3, 2, 5, 6, 5, 2, 3, 0, 9. Read modulo 9, a sequence with period length 18 results.
Denominators are in A154615.
a(n) is the numerator of (n-1)*(n+1)/4. - Altug Alkan, Apr 19 2018

Crossrefs

Essentially the same as A070260. Cf. A078371 (second bisection of A061037), A142888 (first differences), A154615 (denominators), A225948.

Programs

  • Magma
    [-(3/4)*(-1)^n*n-(3/8)*(-1)^n*n^2+(5/8)*n^2+(5/4)*n: n in [0..60]]; // Vincenzo Librandi, Jul 02 2011
    
  • Mathematica
    Numerator[Table[(1/4)*(1 - 1/n^2), {n,1,50}]] (* G. C. Greubel, Jul 20 2017 *)
  • PARI
    for(n=1, 50, print1(numerator((1/4)*(1 - 1/n^2)), ", ")) \\ G. C. Greubel, Jul 20 2017
    
  • PARI
    a(n) = if(n%2,(n^2-1)/4,n^2-1); \\ Altug Alkan, Apr 19 2018

Formula

a(n) = A061037(2*n).
a(n) = A070260(n-1), n>1.
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6).
a(2^(n-1)) = a(1+A000225(n-1)) = 4^(n-1)-1 = A024036(n-1).
G.f.: x^2*(3+2x+6x^2-x^4)/(1-x^2)^3. - R. J. Mathar, Oct 24 2008
E.g.f.: 1 + (1/4)*((4*x^2 + x - 4)*cosh(x) + (x^2 + 4*x -1)*sinh(x)). - G. C. Greubel, Jul 20 2017
Sum_{n>=2} 1/a(n) = 3/2. - Amiram Eldar, Aug 11 2022

Extensions

Edited by R. J. Mathar, Oct 24 2008