A226023 A142705 (numerators of 1/4-1/(4n^2)) sorted to natural order.
0, 2, 3, 6, 12, 15, 20, 30, 35, 42, 56, 63, 72, 90, 99, 110, 132, 143, 156, 182, 195, 210, 240, 255, 272, 306, 323, 342, 380, 399, 420, 462, 483, 506, 552, 575, 600, 650, 675, 702, 756, 783, 812, 870, 899
Offset: 0
Links
- Paolo Xausa, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (1,0,2,-2,0,-1,1).
Programs
-
Maple
A226023 := proc(n) option remember; if n <=6 then op(n+1,[0,2,3,6,12,15,20]) ; else procname(n-1)+2*procname(n-3)-2*procname(n-4)-procname(n-6)+procname(n-7) ; end if; end proc: # R. J. Mathar, Jun 28 2013
-
Mathematica
A226023[n_]:=Floor[(2n+1)/3]Floor[(2n+5)/3]; Array[A226023,100,0] (* Paolo Xausa, Dec 05 2023 *)
Formula
Recurrences: a(n) = 3*a(n-3) -3*a(n-6) +a(n-9) = a(n-1) +2*a(n-3) -2*a(n-4) -a(n-6) +a(n-7).
a(n+15) - a(n) = 10*A042968(n+8).
a(n+1) - a(n-2) = 2*A042968(n) with a(-2)=0, a(-1)=-1.
G.f.: x*(2+x+3*x^2+2*x^3+x^4-x^5)/((1-x)^3 * (1+x+x^2)^2). [Ralf Stephan, May 24 2013]
Comments