cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A142710 a(n) = A142585(n) + A142586(n).

Original entry on oeis.org

2, 2, 6, 14, 38, 112, 276, 814, 1998, 5702, 14226, 39404, 99908, 270922, 695106, 1859134, 4807518, 12748472, 33128916, 87394454, 227792678, 599050102, 1564242906, 4106054164, 10733283588, 28143585362, 73614464826, 192899714414, 504751433798, 1322156172352
Offset: 0

Views

Author

Paul Curtz, Sep 25 2008

Keywords

Comments

Sum of the binomial and inverse binomial transforms of A014217.
Starting at a(1), the last digits form a period-4 sequence 2, 6, 4, 8.

Crossrefs

Programs

  • Magma
    [n eq 0 select 2 else (-1)^n*Lucas(n) +Lucas(2*n) -(1+(-1)^n)*2^(n-1): n in [0..50]]; // G. C. Greubel, Oct 26 2022
    
  • Mathematica
    Join[{2},LinearRecurrence[{2,7,-12,-11,16,-4},{2,6,14,38,112,276},30]] (* Harvey P. Dale, Nov 25 2013 *)
  • SageMath
    def A142710(n): return (-1)^n*lucas_number2(n,1,-1) + lucas_number2(2*n,1,-1) - (1 + (-1)^n)*2^(n-1) -int(n==0)
    [A142710(n) for n in range(51)] # G. C. Greubel, Oct 26 2022

Formula

a(n) = +2*a(n-1) +7*a(n-2) -12*a(n-3) -11*a(n-4) +16*a(n-5) -4*a(n-6), n>6. - R. J. Mathar, Jun 14 2010
G.f.: 2*(1-x-6*x^2+6*x^3+7*x^4-2*x^6)/((1-2*x)*(1+2*x)*(1+x-x^2)*(1-3*x+x^2)). - Colin Barker, Aug 13 2012
a(n) = (-1)^n*LucasL(n) + LucasL(2*n) - (1 + (-1)^n)*2^(n-1) - [n=0]. - G. C. Greubel, Oct 26 2022

Extensions

Offset set to zero and extended - R. J. Mathar, Jun 14 2010