cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A214345 Interleaved reading of A073577 and A053755.

Original entry on oeis.org

5, 7, 17, 23, 37, 47, 65, 79, 101, 119, 145, 167, 197, 223, 257, 287, 325, 359, 401, 439, 485, 527, 577, 623, 677, 727, 785, 839, 901, 959, 1025, 1087, 1157, 1223, 1297, 1367, 1445, 1519, 1601, 1679, 1765, 1847, 1937, 2023, 2117, 2207, 2305, 2399, 2501
Offset: 0

Views

Author

Keywords

Comments

The elements of this sequence satisfy the property that for every n=2k the triple (a(2k-1)^2, a(2k)^2 , a(2k+1)^2) is an arithmetic progression, i.e., 2*a(2k)^2 = a(2k-1)^2 + a(2k+1)^2. In general a triple((x-y)^2,z^2,(x+y)^2) is an arithmetic progression if and only if x^2+y^2=z^2 : in the case of this sequence 7^2, 17^2, and 23^2 is such a triple (i.e. 15-8 =7, 17, 8+15=23, and 8^2+15^2=17^2) .
The first differences of such a sequence is always an interleaved sequence; in this case the interleaved sequence is 2,10,6,14,10,... (A142954).

Examples

			For n = 7, a(7)=2*a(6)-2*a(4)+a(3)=2*65-2*37+23=79
		

Crossrefs

First differences: A142954; 2-element moving average (a(n-1) + a(n))/2: A002378. - Guenther Schrack, Oct 25 2018

Programs

  • GAP
    a:=[7,17];; for n in [3..50] do a[n]:=4*(n+1)+a[n-2]; od; Concatenation([5],a); # Muniru A Asiru, Oct 26 2018
  • Magma
    I:=[5, 7, 17, 23];[n le 4 select I[n] else 2*Self(n-1)-2*Self(n-3)+Self(n-4): n in [1..75]];
    
  • Maple
    seq(coeff(series((x^3-3*x^2+3*x-5)/((x-1)^3*(x+1)),x,n+1), x, n), n = 0 .. 50); # Muniru A Asiru, Oct 26 2018
  • Mathematica
    LinearRecurrence[{2,0,-2,1},{5,7,17,23},50] (* Harvey P. Dale, Apr 02 2018 *)
  • Maxima
    A214345(n):=(2*n*(n+4)+3*(-1)^n+7)/2$
    makelist(A214345(n),n,0,30); /* Martin Ettl, Nov 01 2012 */
    

Formula

a(2n+1) = A073577(n+1); a(2n) = A053755(n+1).
a(n+1)-a(n) = A142954(n+1).
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4).
G.f.: (x^3-3*x^2+3*x-5)/((x-1)^3*(x+1)).
a(n) = (2*n*(n+4)+3*(-1)^n+7)/2.
2*a(2n)^2 = a(2n-1)^2 + a(2n+1)^2.
a(n) = 4*(n+1) + a(n-2) for n > 1; a(-n) = a(n-4). - Guenther Schrack, Oct 24 2018
E.g.f.: (5 + 5*x + x^2)*cosh(x) + (2 + 5*x + x^2)*sinh(x). - Stefano Spezia, Feb 22 2024

A142717 First (leftmost) odd term in the n-th row of triangle A120070.

Original entry on oeis.org

3, 5, 15, 21, 35, 45, 63, 77, 99, 117, 143, 165, 195, 221, 255, 285, 323, 357, 399, 437, 483, 525, 575, 621, 675, 725, 783, 837, 899, 957, 1023, 1085, 1155, 1221, 1295, 1365, 1443, 1517, 1599, 1677, 1763, 1845, 1935, 2021, 2115, 2205, 2303, 2397, 2499, 2597
Offset: 1

Views

Author

Paul Curtz, Sep 26 2008

Keywords

Comments

Also: Records sequence of A100181.
The last (rightmost) term in the n-th row of triangle A120070 is A005408(n).

Examples

			The odd terms of A120070 build the irregular triangle
  3;
  5;
  15,7;
  21,9;
  35,27,11;
  45,33,13;
  63,55,39,15;
The leftmost column defines this sequence.
		

Crossrefs

Programs

  • Mathematica
    A142717[n_]:=(n+1)^2-If[OddQ[n],1,4];Array[A142717,100] (* or *)
    LinearRecurrence[{2,0,-2,1},{3,5,15,21},100] (* Paolo Xausa, Dec 05 2023 *)

Formula

First differences: a(n+1)-a(n) = A142954(n).
From R. J. Mathar, Oct 24 2008: (Start)
a(n) = (n+1)^2-1 = A000466((n+1)/2) if n odd.
a(n) = (n+1)^2-4 = A078371(n/2-1) if n even.
a(n) = 2*a(n-1) -2*a(n-3) +a(n-4).
G.f.: x(3-x+5x^2-3x^3)/((1+x)(1-x)^3). (End)

Extensions

Edited and extended by R. J. Mathar, Oct 24 2008
Showing 1-2 of 2 results.