cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A142458 Triangle T(n,k) read by rows: T(n,k) = 1 if k=1 or k=n, otherwise T(n,k) = (3*n-3*k+1)*T(n-1,k-1) + (3*k-2)*T(n-1,k).

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 39, 39, 1, 1, 166, 546, 166, 1, 1, 677, 5482, 5482, 677, 1, 1, 2724, 47175, 109640, 47175, 2724, 1, 1, 10915, 373809, 1709675, 1709675, 373809, 10915, 1, 1, 43682, 2824048, 23077694, 44451550, 23077694, 2824048, 43682, 1
Offset: 1

Views

Author

Roger L. Bagula, Sep 19 2008

Keywords

Comments

Consider the triangle T(n,k) given by T(n, 1) = T(n,n) = 1, otherwise T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k). For m = ...,-2,-1,0,1,2,3,... we get ..., A225372, A144431, A007318, A008292, A060187, A142458, ... - N. J. A. Sloane, May 08 2013

Examples

			The rows n >= 1 and columns 1 <= k <= n look as follows:
  1;
  1,     1;
  1,     8,       1;
  1,    39,      39,        1;
  1,   166,     546,      166,        1;
  1,   677,    5482,     5482,      677,        1;
  1,  2724,   47175,   109640,    47175,     2724,       1;
  1, 10915,  373809,  1709675,  1709675,   373809,   10915,     1;
  1, 43682, 2824048, 23077694, 44451550, 23077694, 2824048, 43682, 1;
		

Crossrefs

Cf. A225372 (m=-2), A144431 (m=-1), A007318 (m=0), A008292 (m=1), A060187 (m=2), this sequence (m=3), A142459 (m=4), A142560 (m=5), A142561 (m=6), A142562 (m=7), A167884 (m=8), A257608 (m=9).

Programs

  • Maple
    A142458 := proc(n,k) if n = k then 1; elif k > n or k < 1 then 0 ;else (3*n-3*k+1)*procname(n-1,k-1)+(3*k-2)*procname(n-1,k) ; end if; end proc:
    seq(seq(A142458(n,k),k=1..n),n=1..10) ; # R. J. Mathar, Jun 04 2011
  • Mathematica
    T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k -m+1)*T[n-1, k, m] ];
    Table[T[n, k, 3], {n, 1, 10}, {k, 1, n}]//Flatten (* modified by G. C. Greubel, Mar 14 2022 *)
  • Sage
    def T(n,k,m): # A142458
        if (k==1 or k==n): return 1
        else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m)
    flatten([[T(n,k,3) for k in (1..n)] for n in (1..10)]) # G. C. Greubel, Mar 14 2022

Formula

T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), with T(n, 1) = T(n, n) = 1, and m = 3.
Sum_{k=1..n} T(n, k) = A008544(n-1).
From G. C. Greubel, Mar 14 2022: (Start)
T(n, n-k) = T(n, k).
T(n, 2) = A144414(n-1).
T(n, 3) = A142976(n-2).
T(n, 4) = A144380(n-3).
T(n, 5) = A144381(n-4). (End)

Extensions

Edited by the Associate Editors of the OEIS, Aug 28 2009

A144380 Third subdiagonal of A142458: a(n) = A142458(n+3,n).

Original entry on oeis.org

1, 166, 5482, 109640, 1709675, 23077694, 284433852, 3300384000, 36740695125, 397251942790, 4206505251886, 43874389439176, 452588032465727, 4630933106076350, 47101176806668160, 476947462419456864, 4813761757416769257, 48466731584985480870, 487104579690137249650, 4889039701269534580360
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Oct 01 2008

Keywords

Crossrefs

Programs

  • Magma
    [(1/162)*( 8*10^(n+3) - 30*(3*n +8)*7^(n+2) + 6*(9*n^2 +39*n +40)*4^(n+2) - (27*n^3 +135*n^2 +198*n +80)): n in [1..30]]; // G. C. Greubel, Mar 15 2022
    
  • Mathematica
    T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1,k-1,m] + (m*k - m+1)*T[n-1,k,m]];
    A144380[n_]:= T[n+3, n, 3];
    Table[A144380[n], {n,30}] (* modified by G. C. Greubel, Mar 15 2022 *)
  • Sage
    @CachedFunction
    def T(n,k,m):
        if (k==1 or k==n): return 1
        else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m)
    def A144380(n): return T(n+3, n, 3)
    [A144380(n) for n in (1..30)] # G. C. Greubel, Mar 15 2022

Formula

G.f.: x*(1 +126*x -483*x^2 -3884*x^3 +15300*x^4 -10848*x^5 -8960*x^6)/ ( (1-10*x) *(1-7*x)^2 *(1-4*x)^3 *(1-x)^4 ). - R. J. Mathar, Sep 14 2013
a(n) = (1/162)*( 8*10^(n+3) - 30*(3*n +8)*7^(n+2) + 6*(9*n^2 +39*n +40)*4^(n+2) - (27*n^3 +135*n^2 +198*n +80)). - G. C. Greubel, Mar 15 2022

A144414 a(n) = 2*(4^n - 1)/3 - n.

Original entry on oeis.org

1, 8, 39, 166, 677, 2724, 10915, 43682, 174753, 699040, 2796191, 11184798, 44739229, 178956956, 715827867, 2863311514, 11453246105, 45812984472, 183251937943, 733007751830, 2932031007381, 11728124029588, 46912496118419
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Oct 01 2008

Keywords

Crossrefs

Programs

  • Magma
    [(2^(2*n+1) -3*n -2)/3: n in [1..50]]; // G. C. Greubel, Mar 28 2021
    
  • Mathematica
    Table[2(4^n-1)/3 -n,{n,30}] (* or *) LinearRecurrence[{6,-9,4},{1,8,39},30] (* Harvey P. Dale, Mar 17 2015 *)
  • Sage
    [(2^(2*n+1) -3*n -2)/3 for n in (1..50)] # G. C. Greubel, Mar 28 2021

Formula

a(n) = A142458(n+1,n).
a(n) = A020988(n) - n. - R. J. Mathar, Nov 21 2008
G.f.: x*(1+2*x)/((1-x)^2*(1-4*x)). - Colin Barker, Jan 11 2012
a(1)=1, a(2)=8, a(3)=39, a(n) = 6*a(n-1) - 9*a(n-2) + 4*a(n-3). - Harvey P. Dale, Mar 17 2015
E.g.f.: (1/3)*(-2 - 3*x + 2*exp(x))*exp(x). - G. C. Greubel, Mar 28 2021

A144381 a(n) = A142458(n+5, n). Fifth diagonal of A142458 triangle.

Original entry on oeis.org

1, 677, 47175, 1709675, 44451550, 947113254, 17716715490, 302925749370, 4856552119935, 74258231957275, 1095758678253041, 15736592058221517, 221321453958111620, 3062416225698505060, 41836761536767296660, 565817483249269872324, 7591501608353930033805, 101209790951020335444705
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Oct 01 2008

Keywords

Crossrefs

Programs

  • Magma
    [(1/1944)*((27*n^3 + 216*n^2 + 549*n + 440)*(3*n + 2 - 2*4^(n + 4)) +
       60*(9*n^2 + 57*n + 88)*7^(n + 3) - 32*(3*n + 11)*10^(n + 4) +
    880*13^(n + 3)): n in [1..30]]; // G. C. Greubel, Mar 16 2022
    
  • Mathematica
    T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k-m+1)*T[n-1, k, m]];
    A144381[n_]:= T[n+4,n,3];
    Table[A144381[n], {n,30}] (* modified by G. C. Greubel, Mar 16 2022 *)
  • Sage
    @CachedFunction
    def T(n,k,m): # A144381
        if (k==1 or k==n): return 1
        else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m)
    def A144381(n): return T(n+4, n, 3)
    [A144381(n) for n in (1..30)] # G. C. Greubel, Mar 16 2022

Formula

a(n) = A142458(n+5, n).
From G. C. Greubel, Mar 16 2022: (Start)
G.f.: x*(1 +602*x -1080*x^2 -172614*x^3 +1780275*x^4 -5025348*x^5 -7549548*x^6 +60043488*x^7 -99645984*x^8 +39979520*x^9 +27596800*x^10)/((1-x)^5*(1-4*x)^4*(1-7*x)^3*(1-10*x)^2*(1-13*x)).
a(n) = (1/1944)*((27*n^3 +216*n^2 +549*n +440)*(3*n +2 - 2*4^(n+4)) +
60*(9*n^2 +57*n +88)*7^(n+3) -32*(3*n+11)*10^(n+4) + 880*13^(n+3)). (End)

Extensions

Edited by G. C. Greubel, Mar 16 2022
Showing 1-4 of 4 results.