A142458
Triangle T(n,k) read by rows: T(n,k) = 1 if k=1 or k=n, otherwise T(n,k) = (3*n-3*k+1)*T(n-1,k-1) + (3*k-2)*T(n-1,k).
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 1, 39, 39, 1, 1, 166, 546, 166, 1, 1, 677, 5482, 5482, 677, 1, 1, 2724, 47175, 109640, 47175, 2724, 1, 1, 10915, 373809, 1709675, 1709675, 373809, 10915, 1, 1, 43682, 2824048, 23077694, 44451550, 23077694, 2824048, 43682, 1
Offset: 1
The rows n >= 1 and columns 1 <= k <= n look as follows:
1;
1, 1;
1, 8, 1;
1, 39, 39, 1;
1, 166, 546, 166, 1;
1, 677, 5482, 5482, 677, 1;
1, 2724, 47175, 109640, 47175, 2724, 1;
1, 10915, 373809, 1709675, 1709675, 373809, 10915, 1;
1, 43682, 2824048, 23077694, 44451550, 23077694, 2824048, 43682, 1;
Cf.
A225372 (m=-2),
A144431 (m=-1),
A007318 (m=0),
A008292 (m=1),
A060187 (m=2), this sequence (m=3),
A142459 (m=4),
A142560 (m=5),
A142561 (m=6),
A142562 (m=7),
A167884 (m=8),
A257608 (m=9).
-
A142458 := proc(n,k) if n = k then 1; elif k > n or k < 1 then 0 ;else (3*n-3*k+1)*procname(n-1,k-1)+(3*k-2)*procname(n-1,k) ; end if; end proc:
seq(seq(A142458(n,k),k=1..n),n=1..10) ; # R. J. Mathar, Jun 04 2011
-
T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k -m+1)*T[n-1, k, m] ];
Table[T[n, k, 3], {n, 1, 10}, {k, 1, n}]//Flatten (* modified by G. C. Greubel, Mar 14 2022 *)
-
def T(n,k,m): # A142458
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m)
flatten([[T(n,k,3) for k in (1..n)] for n in (1..10)]) # G. C. Greubel, Mar 14 2022
Edited by the Associate Editors of the OEIS, Aug 28 2009
Original entry on oeis.org
1, 166, 5482, 109640, 1709675, 23077694, 284433852, 3300384000, 36740695125, 397251942790, 4206505251886, 43874389439176, 452588032465727, 4630933106076350, 47101176806668160, 476947462419456864, 4813761757416769257, 48466731584985480870, 487104579690137249650, 4889039701269534580360
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..990
- Index entries for linear recurrences with constant coefficients, signature (40,-675,6294,-35679,127548,-289173,409062,-347112,161056,-31360).
-
[(1/162)*( 8*10^(n+3) - 30*(3*n +8)*7^(n+2) + 6*(9*n^2 +39*n +40)*4^(n+2) - (27*n^3 +135*n^2 +198*n +80)): n in [1..30]]; // G. C. Greubel, Mar 15 2022
-
T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1,k-1,m] + (m*k - m+1)*T[n-1,k,m]];
A144380[n_]:= T[n+3, n, 3];
Table[A144380[n], {n,30}] (* modified by G. C. Greubel, Mar 15 2022 *)
-
@CachedFunction
def T(n,k,m):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m)
def A144380(n): return T(n+3, n, 3)
[A144380(n) for n in (1..30)] # G. C. Greubel, Mar 15 2022
A144414
a(n) = 2*(4^n - 1)/3 - n.
Original entry on oeis.org
1, 8, 39, 166, 677, 2724, 10915, 43682, 174753, 699040, 2796191, 11184798, 44739229, 178956956, 715827867, 2863311514, 11453246105, 45812984472, 183251937943, 733007751830, 2932031007381, 11728124029588, 46912496118419
Offset: 1
-
[(2^(2*n+1) -3*n -2)/3: n in [1..50]]; // G. C. Greubel, Mar 28 2021
-
Table[2(4^n-1)/3 -n,{n,30}] (* or *) LinearRecurrence[{6,-9,4},{1,8,39},30] (* Harvey P. Dale, Mar 17 2015 *)
-
[(2^(2*n+1) -3*n -2)/3 for n in (1..50)] # G. C. Greubel, Mar 28 2021
A144381
a(n) = A142458(n+5, n). Fifth diagonal of A142458 triangle.
Original entry on oeis.org
1, 677, 47175, 1709675, 44451550, 947113254, 17716715490, 302925749370, 4856552119935, 74258231957275, 1095758678253041, 15736592058221517, 221321453958111620, 3062416225698505060, 41836761536767296660, 565817483249269872324, 7591501608353930033805, 101209790951020335444705
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..890
- Index entries for linear recurrences with constant coefficients, signature (75, -2520, 50204, -661458, 6086718, -40273648, 194372208, -687083013, 1771618303, -3293261472, 4325310828, -3886563008, 2261691264, -765434880, 114150400).
-
[(1/1944)*((27*n^3 + 216*n^2 + 549*n + 440)*(3*n + 2 - 2*4^(n + 4)) +
60*(9*n^2 + 57*n + 88)*7^(n + 3) - 32*(3*n + 11)*10^(n + 4) +
880*13^(n + 3)): n in [1..30]]; // G. C. Greubel, Mar 16 2022
-
T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k-m+1)*T[n-1, k, m]];
A144381[n_]:= T[n+4,n,3];
Table[A144381[n], {n,30}] (* modified by G. C. Greubel, Mar 16 2022 *)
-
@CachedFunction
def T(n,k,m): # A144381
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m)
def A144381(n): return T(n+4, n, 3)
[A144381(n) for n in (1..30)] # G. C. Greubel, Mar 16 2022
Showing 1-4 of 4 results.
Comments