A142999 a(0) = 0, a(1) = 1; for n > 1, a(n+1) = (2*n + 1)*a(n) + n^4*a(n-1).
0, 1, 3, 31, 460, 12076, 420336, 21114864, 1325949696, 109027627776, 10771080883200, 1316468976307200, 187978181665996800, 31997755234356019200, 6232784237890147123200, 1409976507981835100160000, 359243973790625586216960000, 104259271562188189469245440000
Offset: 0
References
- Bruce C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- R. Bacher, P. de la Harpe and B. Venkov, Séries de croissance et polynômes d'Ehrhart associées aux réseaux de racines, Annales de l'Institut Fourier, Tome 49 (1999) no. 3, pp. 727-762.
- R. Bacher, P. de la Harpe and B. Venkov, Séries de croissance et séries d'Ehrhart associées aux réseaux de racines, C. R. Acad. Sci. Paris, 325 (Series 1) (1997), 1137-1142.
- D. Bump, K. Choi, P. Kurlberg and J. Vaaler, A local Riemann hypothesis, I, Math. Zeit. 233, (2000), 1-19.
- N. Gogin and M. Hirvensalo, On the generating function of discrete Chebyshev polynomials, Turku Centre for Computer Science Technical Report No. 819, (2007), 1-8.
Programs
-
Maple
a := n -> n!^2*add ((-1)^(k+1)/k^2, k = 1..n): seq(a(n), n = 0..20);
-
Mathematica
f[k_] := (k^2) (-1)^(k + 1) t[n_] := Table[f[k], {k, 1, n}] a[n_] := SymmetricPolynomial[n - 1, t[n]] Table[a[n], {n, 1, 18}] (* A142999 signed *) (* Clark Kimberling, Dec 30 2011 *) RecurrenceTable[{a[0]==0,a[1]==1,a[n]==(2(n-1)+1)a[n-1]+(n-1)^4 a[n-2]},a,{n,20}] (* Harvey P. Dale, Apr 26 2014 *)
Formula
a(n) = (n!^2) * Sum_{k = 1..n} (-1)^(k+1)/k^2.
Recurrence: a(0) = 0, a(1) = 1, a(n+1) = (2*n + 1)*a(n) + (n^4)*a(n-1).
The sequence b(n) := n!^2 satisfies the same recurrence with the initial conditions b(0) = 1, b(1) = 1. Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(1 + 1^4/(3 + 2^4/(5 + 3^4/(7 + ... + (n - 1)^4/(2*n - 1))))), for n >= 2.
Limit_{n -> oo} a(n)/b(n) = 1/(1 + 1^4/(3 + 2^4/(5 + 3^4/(7 + ... + n^4/((2*n + 1) + ...))))) = Sum_{k >= 1} (-1)^(k+1)/k^2 = 1/2*zeta(2).
Sum_{n>=0} a(n) * x^n / (n!)^2 = -polylog(2,-x) / (1 - x). - Ilya Gutkovskiy, Jul 15 2020
Extensions
a(0)=0 added by Vincenzo Librandi, Apr 27 2014
Comments