cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143128 a(n) = Sum_{k=1..n} k*sigma(k).

Original entry on oeis.org

1, 7, 19, 47, 77, 149, 205, 325, 442, 622, 754, 1090, 1272, 1608, 1968, 2464, 2770, 3472, 3852, 4692, 5364, 6156, 6708, 8148, 8923, 10015, 11095, 12663, 13533, 15693, 16685, 18701, 20285, 22121, 23801, 27077, 28483, 30763, 32947, 36547
Offset: 1

Views

Author

Gary W. Adamson, Jul 26 2008

Keywords

Comments

Partial sums of A064987. - Omar E. Pol, Jul 04 2014
a(n) is also the volume after n-th step of the symmetric staircase described in A244580 (see also A237593). - Omar E. Pol, Jul 31 2018
In general, for j >= 1 and m >= 0, Sum_{k=1..n} k^m * sigma_j(k) ~ n^(j+m+1) * zeta(j+1) / (j+m+1). - Daniel Suteu, Nov 21 2018

Examples

			a(4) = 47 = (1 + 6 + 12 + 28) where A064987 = (1, 6, 12, 28, 30, ...).
a(4) = 47 = sum of row 4 terms of triangle A110662 = (15 + 14 + 11 + 7).
		

Crossrefs

Programs

  • Magma
    [(&+[k*DivisorSigma(1,k): k in [1..n]]): n in [1..50]]; // G. C. Greubel, Nov 21 2018
    
  • Maple
    with(numtheory): a:=proc(n) options operator, arrow: sum(k*sigma(k), k=1..n) end proc: seq(a(n),n=1..40); # Emeric Deutsch, Aug 12 2008
  • Mathematica
    Table[Sum[i*DivisorSigma[1, i], {i, n}], {n, 50}] (* Wesley Ivan Hurt, Jul 06 2014 *)
  • PARI
    a(n)=sum(k=1,n,k*sigma(k)) \\ Charles R Greathouse IV, Apr 27 2015
    
  • PARI
    f(n) = n*(n+1)*(2*n+1)/6; \\ A000330
    g(n) = n*(n+1)/2; \\ A000217
    a(n) = sum(k=1, sqrtint(n), k * f(n\k) + k^2 * g(n\k)) - f(sqrtint(n)) * g(sqrtint(n)); \\ Daniel Suteu, Nov 26 2020
    
  • Python
    def A143128(n): return sum(k**2*(m:=n//k)*(m+1)>>1 for k in range(1,n+1)) # Chai Wah Wu, Oct 20 2023
    
  • Python
    from math import isqrt
    def A143128(n): return ((-((s:=isqrt(n))*(s+1))**2*(2*s+1)>>1) + sum((q:=n//k)*(q+1)*k*(3*k+2*q+1) for k in range(1,s+1)))//6 # Chai Wah Wu, Oct 21 2023
  • Sage
    [sum(k*sigma(k,1) for k in (1..n)) for n in (1..50)] # G. C. Greubel, Nov 21 2018
    

Formula

Sum {k=1..n} k*sigma(k), where sigma(n) = A000203: (1, 3, 4, 7, 6, 12, ...) and n*sigma(n) = A064987: (1, 6, 12, 28, ...). Equals row sums of triangle A110662. - Emeric Deutsch, Aug 12 2008
a(n) ~ n^3 * Pi^2/18. - Charles R Greathouse IV, Jun 19 2012
G.f.: x*f'(x)/(1 - x), where f(x) = Sum_{k>=1} k*x^k/(1 - x^k). - Ilya Gutkovskiy, Apr 13 2017
a(n) = Sum_{k=1..n} k^2/2 * floor(n/k) * floor(1 + n/k). - Daniel Suteu, May 29 2018
a(n) = A256533(n) - A175254(n-1), n >= 2. - Omar E. Pol, Jul 31 2018
a(n) = Sum_{k=1..s} (k*A000330(floor(n/k)) + k^2*A000217(floor(n/k))) - A000330(s)*A000217(s), where s = floor(sqrt(n)). - Daniel Suteu, Nov 26 2020
a(n) = Sum_{k=1..n} Sum_{i=1..floor(n/k)} i*k^2. - Wesley Ivan Hurt, Nov 26 2020

Extensions

Corrected and extended by Emeric Deutsch, Aug 12 2008