A143184 Coefficients of a Ramanujan q-series.
1, 1, 2, 4, 6, 10, 15, 23, 33, 49, 69, 98, 136, 188, 256, 348, 466, 622, 824, 1084, 1418, 1846, 2389, 3077, 3947, 5038, 6407, 8115, 10241, 12876, 16141, 20160, 25110, 31179, 38609, 47674, 58724, 72141, 88421, 108114, 131902, 160565, 195061, 236468
Offset: 0
Keywords
Examples
G.f. = 1 + q + 2*q^2 + 4*q^3 + 6*q^4 + 10*q^5 + 15*q^6 + 23*q^7 + 33*q^8 + ...
References
- S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 10
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- G. E. Andrews, Ramanujan's "lost" notebook. IV. Stacks and alternating parity in partitions, Adv. in Math. 53 (1984), 55-74.
- B. Kim, E. Kim, and J. Lovejoy, On weighted overpartitions related to some q-series in Ramanujan's lost notebook, Int. J. Number Theory 17 (2021), 603-619.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(i>n, 0, `if`(irem(n, i, 'r')=0, r, 0)+ add(j*b(n-i*j, i+1), j=1..n/i)) end: a:= n-> `if`(n=0, 1, b(n, 1)): seq(a(n), n=0..50); # Alois P. Heinz, Oct 03 2018
-
Mathematica
m = 50; Sum[x^(k(k+1)/2)/Product[1-x^j, {j, 1, k}]^2, {k, 0, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Nov 20 2020 *)
-
PARI
{a(n) = my(t); if(n<0, 0, t = 1 + x*O(x^n); polcoef(sum(k=1, (sqrtint(8*n + 1) - 1)\2, t = t*x^k/(1 - x^k)^2 + x*O(x^n), 1), n))};
Formula
G.f.: Sum_{k>=0} x^((k^2+k)/2) / ((1 - x) * (1 - x^2) ... (1 - x^k))^2.
a(n) ~ exp(2*Pi*sqrt(n/5)) / (2^(3/2) * 5^(3/4) * n). - Vaclav Kotesovec, Nov 20 2020
Comments