cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143184 Coefficients of a Ramanujan q-series.

Original entry on oeis.org

1, 1, 2, 4, 6, 10, 15, 23, 33, 49, 69, 98, 136, 188, 256, 348, 466, 622, 824, 1084, 1418, 1846, 2389, 3077, 3947, 5038, 6407, 8115, 10241, 12876, 16141, 20160, 25110, 31179, 38609, 47674, 58724, 72141, 88421, 108114, 131902, 160565, 195061, 236468
Offset: 0

Views

Author

Michael Somos, Jul 28 2008

Keywords

Comments

Also equal to the number of overpartitions of n with no non-overlined parts larger than the number of overlined parts. For example, the overpartitions counted by a(4) = 6 are: [4'], [3',1], [3',1'], [2',1,1], [2',1',1], [1',1,1,1]. - Jeremy Lovejoy, Aug 23 2021
Also the number of partitions into red and blue integers, where the red parts cover an initial segment of the positive integers, and there can be no blue integer if there is not also a red one with the same value. For example, when the red integers are marked with a prime, the partitions counted by a(4) are: [2',1',1], [2',1',1'], [1',1,1,1], [1',1',1,1], [1',1',1',1], [1',1',1',1']. - Christian Sievers, May 09 2025

Examples

			G.f. = 1 + q + 2*q^2 + 4*q^3 + 6*q^4 + 10*q^5 + 15*q^6 + 23*q^7 + 33*q^8 + ...
		

References

  • S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 10

Crossrefs

Convolution with A002448 is A132211.
Cf. A015128 (has definition of overpartitions).

Programs

  • Maple
    b:= proc(n, i) option remember;
         `if`(i>n, 0, `if`(irem(n, i, 'r')=0, r, 0)+
          add(j*b(n-i*j, i+1), j=1..n/i))
        end:
    a:= n-> `if`(n=0, 1, b(n, 1)):
    seq(a(n), n=0..50);  # Alois P. Heinz, Oct 03 2018
  • Mathematica
    m = 50;
    Sum[x^(k(k+1)/2)/Product[1-x^j, {j, 1, k}]^2, {k, 0, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Nov 20 2020 *)
  • PARI
    {a(n) = my(t); if(n<0, 0, t = 1 + x*O(x^n); polcoef(sum(k=1, (sqrtint(8*n + 1) - 1)\2, t = t*x^k/(1 - x^k)^2 + x*O(x^n), 1), n))};

Formula

G.f.: Sum_{k>=0} x^((k^2+k)/2) / ((1 - x) * (1 - x^2) ... (1 - x^k))^2.
a(n) ~ exp(2*Pi*sqrt(n/5)) / (2^(3/2) * 5^(3/4) * n). - Vaclav Kotesovec, Nov 20 2020