cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A001524 Number of stacks, or arrangements of n pennies in contiguous rows, each touching 2 in row below.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 8, 12, 18, 26, 38, 53, 75, 103, 142, 192, 260, 346, 461, 607, 797, 1038, 1348, 1738, 2234, 2856, 3638, 4614, 5832, 7342, 9214, 11525, 14369, 17863, 22142, 27371, 33744, 41498, 50903, 62299, 76066, 92676, 112666, 136696, 165507, 200018
Offset: 0

Views

Author

Keywords

Comments

Also n-stacks with strictly receding left wall.
Weakly unimodal compositions such that each up-step is by at most 1 (and first part 1). By dropping the requirement for weak unimodality one obtains A005169. - Joerg Arndt, Dec 09 2012
The values of a(19) and a(20) in Auluck's table on page 686 are wrong (they have been corrected here). - David W. Wilson, Mar 07 2015
Also the number of overpartitions of n having more overlined parts than non-overlined parts. For example, a(5) = 5 counts the overpartitions [5'], [4',1'], [3',2'], [3',1',1] and [2',2,1']. - Jeremy Lovejoy, Jan 15 2021

Examples

			For a(6)=8 we have the following stacks:
..x
.xx .xx. ..xx .x... ..x.. ...x. ....x
xxx xxxx xxxx xxxxx xxxxx xxxxx xxxxx xxxxxx
From _Franklin T. Adams-Watters_, Jan 18 2007: (Start)
For a(7) = 12 we have the following stacks:
..x. ...x
.xx. ..xx .xxx .xx.. ..xx. ...xx
xxxx xxxx xxxx xxxxx xxxxx xxxxx
and
.x.... ..x... ...x.. ....x. .....x
xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx xxxxxxx
(End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of triangle A259095.

Programs

  • Maple
    s := 1+sum(z^(n*(n+1)/2)/((1-z^(n))*product((1-z^i), i=1..n-1)^2), n=1..50): s2 := series(s, z, 300): for j from 1 to 100 do printf(`%d,`,coeff(s2, z, j)) od: # James Sellers, Feb 27 2001
    # second Maple program:
    b:= proc(n, i) option remember; `if`(i>n, 0, `if`(
          irem(n, i)=0, 1, 0)+add(j*b(n-i*j, i+1), j=1..n/i))
        end:
    a:= n-> `if`(n=0, 1, b(n, 1)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Oct 03 2018
  • Mathematica
    m = 45; CoefficientList[ Series[Sum[ z^(n*(n+1)/2)/((1-z^(n))*Product[(1-z^i), {i, 1, n-1}]^2), {n, 1, m}], {z, 0, m}], z] // Prepend[Rest[#], 1] &
    (* Jean-François Alcover, May 19 2011, after Maple prog. *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum( k=0,(sqrt(8*n + 1) - 1) / 2, x^((k^2 + k) / 2) / prod( i=1, k, (1 - x^i + x * O(x^n))^((iMichael Somos, Apr 27 2003 */

Formula

G.f.: sum(n>=1, q^(n*(n+1)/2) / prod(k=1..n-1, 1-q^k)^2 / (1-q^n) ). [Joerg Arndt, Jun 28 2013]
a(n) = sum_{m>0,k>0,2*k^2+k+2*m<=n-1} A008289(m,k)*A000041(n-k*(1+2k)-2*m-1). - [Auluck eq 29]
From Vaclav Kotesovec, Mar 03 2020: (Start)
Pi * sqrt(2/3) <= n^(-1/2)*log(a(n)) <= Pi * sqrt(5/6). [Auluck, 1951]
log(a(n)) ~ 2*Pi*sqrt(n/5). [Wright, 1971]
a(n) ~ exp(2*Pi*sqrt(n/5)) / (sqrt(2) * 5^(3/4) * (1 + sqrt(5)) * n). (End)
a(n) = A143184(n) - A340659(n). - Vaclav Kotesovec, Jun 06 2021

Extensions

Corrected by R. K. Guy, Apr 08 1988
More terms from James Sellers, Feb 27 2001

A340659 The number of overpartitions of n having an equal number of overlined and non-overlined parts.

Original entry on oeis.org

1, 0, 1, 2, 3, 5, 7, 11, 15, 23, 31, 45, 61, 85, 114, 156, 206, 276, 363, 477, 621, 808, 1041, 1339, 1713, 2182, 2769, 3501, 4409, 5534, 6927, 8635, 10741, 13316, 16467, 20303, 24980, 30643, 37518, 45815, 55836, 67889, 82395, 99772, 120609, 145501, 175229, 210637
Offset: 0

Views

Author

Jeremy Lovejoy, Jan 15 2021

Keywords

Examples

			a(5) = 5 counts the overpartitions [4',1], [4,1'], [3',2], [3,2'], and [2',1',1,1].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, c) option remember; `if`(n=0,
          `if`(c=0, 1, 0), `if`(i<1, 0, b(n, i-1, c)+add(
           add(b(n-i*j, i-1, c+j-t), t=[0, 2]), j=1..n/i)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jan 15 2021
  • Mathematica
    b[n_, i_, c_] := b[n, i, c] = If[n==0, If[c==0, 1, 0], If[i<1, 0, b[n, i-1, c] + Sum[Sum[b[n-i*j, i-1, c+j-t], {t, {0, 2}}], {j, 1, n/i}]]];
    a[n_] := b[n, n, 0];
    a /@ Range[0, 60] (* Jean-François Alcover, Jan 29 2021, after Alois P. Heinz *)
    nmax = 50; CoefficientList[Series[1 + Sum[x^(j*(j+1)/2 + j) / QPochhammer[x, x, j]^2, {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 06 2021 *)

Formula

G.f.: Sum_{n>=0} q^(n*(n+1)/2 + n)/Product_{k=1..n} (1-q^k)^2.
a(n) ~ exp(2*Pi*sqrt(n/5)) / (2^(3/2) * 5^(3/4) * phi^2 * n), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Jun 06 2021
a(n) = A143184(n) - A001524(n). - Vaclav Kotesovec, Jun 06 2021

Extensions

a(0)=1 prepended by Alois P. Heinz, Jan 15 2021

A340621 The number of partitions of n without repeated odd parts having more odd parts than even parts.

Original entry on oeis.org

0, 1, 0, 1, 1, 1, 2, 1, 4, 2, 6, 3, 9, 6, 12, 10, 17, 17, 22, 26, 30, 40, 40, 57, 55, 82, 74, 112, 103, 153, 140, 203, 193, 270, 262, 351, 357, 458, 478, 589, 641, 760, 846, 971, 1114, 1244, 1450, 1582, 1880, 2018, 2412, 2558, 3086, 3247, 3914, 4102, 4949
Offset: 0

Views

Author

Jeremy Lovejoy, Jan 13 2021

Keywords

Examples

			a(8) = 4 counts the partitions [7,1], [5,3], [5,2,1], and [4,3,1].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, c) option remember; `if`(n=0,
          `if`(c>0, 1, 0), `if`(i<1, 0, (t-> add(b(n-i*j, i-1, c+j*
          `if`(t, 1, -1)), j=0..min(n/i, `if`(t, 1, n))))(i::odd)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jan 13 2021
  • Mathematica
    b[n_, i_, c_] := b[n, i, c] = If[n == 0,
         If[c > 0, 1, 0], If[i < 1, 0, Function[t, Sum[b[n - i*j, i - 1, c + j*
         If[t, 1, -1]], {j, 0, Min[n/i, If[t, 1, n]]}]][OddQ[i]]]];
    a[n_] := b[n, n, 0];
    Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 29 2022, after Alois P. Heinz *)
  • PARI
    my(N=66, x='x+O('x^N)); concat(0, Vec(sum(k=1, sqrt(N), x^(k^2)*(1-x^(2*k))/prod(j=1, k, (1-x^(2*j))^2)))) \\ Seiichi Manyama, Jan 14 2021

Formula

G.f.: Sum_{n>=1} q^(n^2)*(1-q^(2*n))/Product_{k=1..n} (1-q^(2*k))^2.
a(n) ~ exp(Pi*sqrt(2*n/5)) / (2^(3/2) * 5^(3/4) * n). - Vaclav Kotesovec, Jan 14 2021

A376853 G.f.: Sum_{k>=0} x^(k*(k+1)/2) * Product_{j=1..k} ((1 + x^j)/(1 - x^j))^2.

Original entry on oeis.org

1, 1, 4, 9, 16, 28, 49, 84, 140, 228, 361, 560, 856, 1288, 1916, 2821, 4108, 5928, 8480, 12024, 16920, 23637, 32788, 45196, 61928, 84368, 114332, 154160, 206857, 276308, 367476, 486680, 641996, 843656, 1104592, 1441168, 1873965, 2428816, 3138132, 4042408, 5192132
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 06 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Sum[x^(k*(k+1)/2) * Product[(1+x^j)/(1-x^j), {j, 1, k}]^2, {k, 0, Sqrt[2*nmax]}], {x, 0, nmax}], x]

Formula

a(n) ~ c * exp(sqrt(8*n*(log(r)^2 + polylog(2,r) - polylog(2,-r)))), where r = A192918 = 0.54368901269207636157... is the real root of the equation r*(1+r^2) = (1-r^2) and c = 0.0643033662740307713580663125340126524175...

A132211 Coefficients of a Ramanujan q-series.

Original entry on oeis.org

1, -1, 0, 0, 0, 0, -1, 1, -1, 1, -1, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -1, 1, -1, 0, 1, -1, 1, -2, 3, -4, 4, -5, 7, -8, 8, -9, 11, -12, 12, -13, 15, -16, 16, -17, 19, -20, 19, -20, 22, -22, 21, -21, 22, -22, 20, -19, 20, -19, 16, -14, 14, -12, 8, -5, 3, 0, -5, 10, -13, 17, -24, 30, -34, 40, -48, 55, -61, 68, -77, 86, -93, 101
Offset: 0

Views

Author

Michael Somos, Aug 13 2007

Keywords

Examples

			G.f. = 1 - x - x^6 + x^7 - x^8 + x^9 - x^10 + 2*x^11 - 2*x^12 + 2*x^13 - 2*x^14 + ...
		

References

  • S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 10

Crossrefs

Convolution with A015128 is A143184. - Michael Somos, Dec 13 2022

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ (-1)^k x^(k (k + 1)/2) / QPochhammer[ x^2, x^2, k], {k, 0, Sqrt[8 n + 1]}], {x, 0, n}]]; (* Michael Somos, Nov 01 2015 *)
  • PARI
    {a(n) = my(t); if( n<0, 0, t = 1 + x * O(x^n); polcoeff( sum(k=1, (sqrtint(8*n + 1) - 1)\2, t = -t * x^k / (1 - x^(2*k)) + x * O(x^n), 1), n))};

Formula

G.f.: Sum_{k>=0} (-1)^k * x^(k*(k + 1)/2) / (x^2; x^2)_n.

A347206 The number of overpartitions of n whose Frobenius symbols have only odd parts in the top row.

Original entry on oeis.org

1, 0, 2, 2, 4, 4, 8, 10, 16, 20, 30, 38, 54, 68, 94, 120, 160, 202, 266, 334, 432, 540, 688, 856, 1080, 1334, 1668, 2052, 2542, 3110, 3828, 4660, 5698, 6906, 8394, 10130, 12250, 14720, 17716, 21210, 25412, 30310, 36172, 42994, 51114, 60558, 71740, 84732, 100052
Offset: 0

Views

Author

Jeremy Lovejoy, Aug 23 2021

Keywords

Comments

a(n) is also the excess of the number of overpartitions of n with an even number of non-overlined parts larger than the number of overlined parts over the number of overpartitions of n with an odd number of non-overlined parts larger than the number of overlined parts.

Crossrefs

Formula

G.f.: (Product_{k>=1} 1/(1-q^k))*Sum_{n>=0} q^(n*(3*n+1)/2)*(1-q^(2*n+1)).

A347207 The number of overpartitions of n whose Frobenius symbols have only positive parts in the top row.

Original entry on oeis.org

1, 0, 2, 4, 6, 10, 16, 26, 40, 62, 92, 136, 198, 284, 404, 570, 794, 1100, 1512, 2060, 2792, 3760, 5030, 6696, 8868, 11682, 15322, 20008, 26012, 33688, 43464, 55864, 71560, 91360, 116256, 147490, 186562, 235304, 295976, 371308, 464614, 579944, 722180, 897212
Offset: 0

Views

Author

Jeremy Lovejoy, Aug 23 2021

Keywords

Comments

a(n) is also the excess of the number of overpartitions of n with an even number of overlined parts larger than the number of non-overlined parts over the number of overpartitions of n with an odd number of overlined parts larger than the number of non-overlined parts.

Crossrefs

Formula

G.f.: (Product_{k>=1} (1+q^k)/(1-q^k))*(1-2*Sum_{n>=1} q^(n*(3*n-1)/2)*(1-q^n)).

A376707 G.f.: Sum_{k>=0} x^(k*(k+1)/2) * Product_{j=1..k} 1/(1 - x^j)^3.

Original entry on oeis.org

1, 1, 3, 7, 13, 24, 41, 70, 114, 186, 293, 459, 703, 1067, 1593, 2359, 3447, 4998, 7175, 10222, 14445, 20277, 28263, 39156, 53922, 73843, 100587, 136331, 183890, 246909, 330094, 439453, 582738, 769782, 1013169, 1328805, 1736942, 2263018, 2939280, 3806072, 4914221
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 02 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Sum[x^(k*(k+1)/2)/Product[1-x^j, {j, 1, k}]^3, {k, 0, Sqrt[2*nmax]}], {x, 0, nmax}], x]

Formula

a(n) ~ r^(1/6) * (log(r)^2 + 6*polylog(2, 1-r))^(3/4) * exp(sqrt(2*(log(r)^2 + 6*polylog(2, 1-r))*n)) / (2^(11/4) * Pi^(3/2) * sqrt(1 + 2*r) * n^(5/4)), where r = 1 - A263719 = 0.3176721961719... is the real root of the equation r = (1-r)^3.

A376710 G.f.: Sum_{k>=0} x^(k*(k+1)/2) * Product_{j=1..k} 1/(1 - x^j)^4.

Original entry on oeis.org

1, 1, 4, 11, 24, 49, 93, 173, 310, 549, 946, 1608, 2676, 4391, 7083, 11283, 17724, 27539, 42309, 64382, 97052, 145092, 215161, 316737, 462980, 672310, 970154, 1391667, 1984999, 2816059, 3974475, 5581789, 7802161, 10856466, 15040941, 20751416, 28515375, 39033040
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 02 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Sum[x^(k*(k+1)/2)/Product[1-x^j, {j, 1, k}]^4, {k, 0, Sqrt[2*nmax]}], {x, 0, nmax}], x]

Formula

a(n) ~ r^(1/8) * (log(r)^2 + 8*polylog(2, 1-r)) * exp(sqrt(2*(log(r)^2 + 8*polylog(2, 1-r))*n)) / (2^(7/2) * Pi^2 * sqrt(1 + 3*r) * n^(3/2)), where r = 0.2755080409994... is the smallest real root of the equation r = (1-r)^4.
Showing 1-9 of 9 results.