A143207 Numbers with distinct prime factors 2, 3, and 5.
30, 60, 90, 120, 150, 180, 240, 270, 300, 360, 450, 480, 540, 600, 720, 750, 810, 900, 960, 1080, 1200, 1350, 1440, 1500, 1620, 1800, 1920, 2160, 2250, 2400, 2430, 2700, 2880, 3000, 3240, 3600, 3750, 3840, 4050, 4320, 4500, 4800, 4860
Offset: 1
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
Programs
-
Haskell
import Data.Set (singleton, deleteFindMin, insert) a143207 n = a143207_list !! (n-1) a143207_list = f (singleton (2*3*5)) where f s = m : f (insert (2*m) $ insert (3*m) $ insert (5*m) s') where (m,s') = deleteFindMin s -- Reinhard Zumkeller, Sep 13 2011
-
Magma
[n: n in [1..5000] | PrimeDivisors(n) eq [2,3,5]]; // Bruno Berselli, Sep 14 2015
-
Mathematica
a = {}; Do[If[EulerPhi[x]/x == 4/15, AppendTo[a, x]], {x, 1, 11664}]; a (* Artur Jasinski, Nov 07 2008 *) n = 10^4; Table[2^i*3^j*5^k, {i, 1, Log[2, n]}, {j, 1, Log[3, n/2^i]}, {k, 1, Log[5, n/(2^i*3^j)]}] // Flatten // Sort (* Amiram Eldar, Sep 24 2020 *)
-
PARI
list(lim)=my(v=List(),s,t); for(i=1,logint(lim\6,5), t=5^i; for(j=1,logint(lim\t\2,3), s=t*3^j; while((s<<=1)<=lim, listput(v,s)))); Set(v) \\ Charles R Greathouse IV, Sep 14 2015
-
PARI
is(n) = if(n%30,return(0)); my(f=factor(n,6)[,1]); f[#f]<6 \\ David A. Corneth, Sep 22 2020
-
Python
from sympy import integer_log def A143207(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): c = n+x for i in range(integer_log(x,5)[0]+1): for j in range(integer_log(m:=x//5**i,3)[0]+1): c -= (m//3**j).bit_length() return c return bisection(f,n,n)*30 # Chai Wah Wu, Sep 16 2024
Formula
a(n) ~ sqrt(30) * exp((6*log(2)*log(3)*log(5)*n)^(1/3)). - Vaclav Kotesovec, Sep 22 2020
Sum_{n>=1} 1/a(n) = 1/8. - Amiram Eldar, Sep 24 2020
Extensions
New name from Charles R Greathouse IV, Sep 14 2015
Comments