cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143207 Numbers with distinct prime factors 2, 3, and 5.

Original entry on oeis.org

30, 60, 90, 120, 150, 180, 240, 270, 300, 360, 450, 480, 540, 600, 720, 750, 810, 900, 960, 1080, 1200, 1350, 1440, 1500, 1620, 1800, 1920, 2160, 2250, 2400, 2430, 2700, 2880, 3000, 3240, 3600, 3750, 3840, 4050, 4320, 4500, 4800, 4860
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 12 2008

Keywords

Comments

Numbers of the form 2^i * 3^j * 5^k with i, j, k > 0. - Reinhard Zumkeller, Sep 13 2011
Integers k such that phi(k)/k = 4/15. - Artur Jasinski, Nov 07 2008

Crossrefs

Cf. A069819.
Subsequence of A143204 and of A051037.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a143207 n = a143207_list !! (n-1)
    a143207_list = f (singleton (2*3*5)) where
       f s = m : f (insert (2*m) $ insert (3*m) $ insert (5*m) s') where
         (m,s') = deleteFindMin s
    -- Reinhard Zumkeller, Sep 13 2011
    
  • Magma
    [n: n in [1..5000] | PrimeDivisors(n) eq [2,3,5]]; // Bruno Berselli, Sep 14 2015
    
  • Mathematica
    a = {}; Do[If[EulerPhi[x]/x == 4/15, AppendTo[a, x]], {x, 1, 11664}]; a (* Artur Jasinski, Nov 07 2008 *)
    n = 10^4; Table[2^i*3^j*5^k, {i, 1, Log[2, n]}, {j, 1, Log[3, n/2^i]}, {k, 1, Log[5, n/(2^i*3^j)]}] // Flatten // Sort (* Amiram Eldar, Sep 24 2020 *)
  • PARI
    list(lim)=my(v=List(),s,t); for(i=1,logint(lim\6,5), t=5^i; for(j=1,logint(lim\t\2,3), s=t*3^j; while((s<<=1)<=lim, listput(v,s)))); Set(v) \\ Charles R Greathouse IV, Sep 14 2015
    
  • PARI
    is(n) = if(n%30,return(0)); my(f=factor(n,6)[,1]); f[#f]<6 \\ David A. Corneth, Sep 22 2020
    
  • Python
    from sympy import integer_log
    def A143207(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c = n+x
            for i in range(integer_log(x,5)[0]+1):
                for j in range(integer_log(m:=x//5**i,3)[0]+1):
                    c -= (m//3**j).bit_length()
            return c
        return bisection(f,n,n)*30 # Chai Wah Wu, Sep 16 2024

Formula

A001221(a(n)) = 3; A020639(a(n)) = 2; A006530(a(n)) = 5; A143201(a(n)) = 6.
a(n) = 30*A051037(n); A007947(a(n)) = A010869(n). - Reinhard Zumkeller, Sep 13 2011
a(n) ~ sqrt(30) * exp((6*log(2)*log(3)*log(5)*n)^(1/3)). - Vaclav Kotesovec, Sep 22 2020
Sum_{n>=1} 1/a(n) = 1/8. - Amiram Eldar, Sep 24 2020

Extensions

New name from Charles R Greathouse IV, Sep 14 2015