cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A257790 Numbers k such that 6*5^k - 1 is prime.

Original entry on oeis.org

0, 1, 2, 5, 11, 28, 65, 72, 361, 479, 494, 599, 1062, 1094, 1193, 2827, 3271, 3388, 3990, 4418, 11178, 16294, 25176, 42500, 68320, 85698, 145259, 159119, 169771, 252665, 412051
Offset: 1

Views

Author

Robert Price, May 08 2015

Keywords

Comments

All terms correspond to verified primes, that is, not merely probable primes.

Crossrefs

Cf. A143279.

Programs

  • Magma
    [n: n in [0..2*10^3] | IsPrime(6*5^n-1)]; // Vincenzo Librandi, May 09 2015
    
  • Mathematica
    Select[Range[0, 10000], PrimeQ[6*5^# - 1] &]
  • PARI
    is(n)=ispseudoprime(6*5^n-1) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(30) from Riley Fisher, Sep 20 2024
a(31) from Riley Fisher, Dec 09 2024

A305531 Smallest k >= 1 such that (n-1)*n^k + 1 is prime.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 3, 10, 3, 1, 2, 1, 1, 4, 1, 29, 14, 1, 1, 14, 2, 1, 2, 4, 1, 2, 4, 5, 12, 2, 1, 2, 2, 9, 16, 1, 2, 80, 1, 2, 4, 2, 3, 16, 2, 2, 2, 1, 15, 960, 15, 1, 4, 3, 1, 14, 1, 6, 20, 1, 3, 946, 6, 1, 18, 10, 1, 4, 1, 5, 42, 4, 1, 828, 1, 1, 2, 1, 12, 2, 6, 4, 30, 3, 3022, 2, 1, 1
Offset: 2

Views

Author

Eric Chen, Jun 04 2018

Keywords

Comments

a(prime(j)) + 1 = A087139(j).
a(123) > 10^5, a(342) > 10^5, see the Barnes link for the Sierpinski base-123 and base-342 problems.
a(251) > 73000, see A087139.

Crossrefs

For the numbers k such that these forms are prime:
a1(b): numbers k such that (b-1)*b^k-1 is prime
a2(b): numbers k such that (b-1)*b^k+1 is prime
a3(b): numbers k such that (b+1)*b^k-1 is prime
a4(b): numbers k such that (b+1)*b^k+1 is prime (no such k exists when b == 1 (mod 3))
a5(b): numbers k such that b^k-(b-1) is prime
a6(b): numbers k such that b^k+(b-1) is prime
a7(b): numbers k such that b^k-(b+1) is prime
a8(b): numbers k such that b^k+(b+1) is prime (no such k exists when b == 1 (mod 3)).
Using "-------" if there is currently no OEIS sequence and "xxxxxxx" if no such k exists (this occurs only for a4(b) and a8(b) for b == 1 (mod 3)):
.
b a1(b) a2(b) a3(b) a4(b) a5(b) a6(b) a7(b) a8(b)
--------------------------------------------------------------------
4 A272057 ------- ------- xxxxxxx A059266 A089437 A217348 xxxxxxx
7 A046866 A245241 ------- xxxxxxx A191469 A217130 A217131 xxxxxxx
11 A046867 A057462 ------- ------- ------- ------- ------- -------
12 A079907 A251259 ------- ------- ------- A137654 ------- -------
13 A297348 ------- ------- xxxxxxx ------- ------- ------- xxxxxxx
14 A273523 ------- ------- ------- ------- ------- ------- -------
15 ------- ------- ------- ------- ------- ------- ------- -------
16 ------- ------- ------- xxxxxxx ------- ------- ------- xxxxxxx
Cf. (smallest k such that these forms are prime) A122396 (a1(b)+1 for prime b), A087139 (a2(b)+1 for prime b), A113516 (a5(b)), A076845 (a6(b)), A178250 (a7(b)).

Programs

  • PARI
    a(n)=for(k=1,2^16,if(ispseudoprime((n-1)*n^k+1),return(k)))

A216888 Numbers k such that 6*3^k + 1 is prime.

Original entry on oeis.org

0, 1, 3, 4, 5, 8, 15, 16, 29, 53, 56, 59, 64, 131, 179, 319, 695, 781, 821, 896, 1251, 1453, 4216, 5479, 6224, 7841, 12095, 13781, 17719, 43955, 64821, 82779, 105105, 152528, 165895, 191813, 529679, 1074725, 1086111, 1175231, 1277861, 1346541, 3123035, 3648968, 5570080, 6236771, 10852676
Offset: 1

Views

Author

Vincenzo Librandi, Sep 26 2012

Keywords

Examples

			3 is a term because 6*3^3 + 1 = 163 is prime.
7 is not a term because 6*3^7 + 1 = 13123 = 11*1193 is composite.
		

Crossrefs

Associated primes are in A111974.

Programs

  • Magma
    /* Gives only the terms up to 1453: */ [n: n in [0..1500] | IsPrime(6*3^n + 1)];
    
  • Mathematica
    Select[Range[5000], PrimeQ[6 3^# + 1] &]
  • PARI
    is(n)=ispseudoprime(6*3^n+1) \\ Charles R Greathouse IV, Jun 13 2017

Formula

a(n) = A003306(n+1)-1. - Bruno Berselli, Sep 27 2012

Extensions

More terms from Vincenzo Librandi, Oct 01 2012
a(41)-a(47) from the data at A003306 added by Amiram Eldar, Jul 18 2025
Showing 1-3 of 3 results.