cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143288 Number of binary words of length n containing at least one subword 10^{8}1 and no subwords 10^{i}1 with i<8.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 15, 21, 29, 39, 51, 65, 81, 99, 120, 146, 180, 225, 284, 360, 456, 575, 720, 895, 1106, 1362, 1676, 2065, 2550, 3156, 3912, 4851, 6011, 7437, 9184, 11321, 13936, 17141, 21077, 25919, 31881, 39222, 48254
Offset: 0

Views

Author

Alois P. Heinz, Aug 04 2008

Keywords

Examples

			a(11)=2 because 2 binary words of length 11 have at least one subword 10^{8}1 and no subwords 10^{i}1 with i<8: 01000000001, 10000000010.
		

Crossrefs

Cf. A005711, A017904, 8th column of A143291.

Programs

  • Maple
    a:= n-> coeff(series(x^10/((x^9+x-1)*(x^10+x-1)), x, n+1), x, n):
    seq(a(n), n=0..70);
  • Mathematica
    CoefficientList[Series[x^10 / ((x^9 + x - 1) (x^10 + x - 1)), {x, 0, 60}], x] (* Vincenzo Librandi, Jun 04 2013 *)
    LinearRecurrence[{2,-1,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,-1},{0,0,0,0,0,0,0,0,0,0,1,2,3,4,5,6,7,8,9},60] (* Harvey P. Dale, Oct 12 2018 *)
  • PARI
    Vec(1/((x^9+x-1)(x^10+x-1))+O(x^99)) \\ Charles R Greathouse IV, Jun 04 2013

Formula

G.f.: x^10/((x^9+x-1)*(x^10+x-1)).
a(n) = A005711(n+7)-A017904(n+19).
a(n) = 2a(n-1) - a(n-2) + a(n-9) - a(n-11) - a(n-19). - Charles R Greathouse IV, Jun 04 2013