A213591
G.f. A(x) satisfies A( x - A(x)^2 ) = x.
Original entry on oeis.org
1, 1, 4, 24, 178, 1512, 14152, 142705, 1528212, 17211564, 202460400, 2474708496, 31310415376, 408815254832, 5495451727376, 75907303147652, 1075685334980240, 15618612118252960, 232102241507321384, 3526880759915999016, 54755450619399484512, 867928449982022915984
Offset: 1
G.f.: A(x) = x + x^2 + 4*x^3 + 24*x^4 + 178*x^5 + 1512*x^6 + 14152*x^7 +...
where A(x) = x + A(A(x))^2:
A(A(x)) = x + 2*x^2 + 10*x^3 + 69*x^4 + 568*x^5 + 5250*x^6 + 52792*x^7 +...
A(A(x))^2 = x^2 + 4*x^3 + 24*x^4 + 178*x^5 + 1512*x^6 + 14152*x^7 +...
The g.f. satisfies the series:
A(x) = x + A(x)^2 + d/dx A(x)^4/2! + d^2/dx^2 A(x)^6/3! + d^3/dx^3 A(x)^8/4! +...
Logarithmic series:
log(A(x)/x) = A(x)^2/x + [d/dx A(x)^4/x]/2! + [d^2/dx^2 A(x)^6/x]/3! + [d^3/dx^3 A(x)^8/x]/4! +...
Also, A(x) = x*G(A(x)^2/x) where G(x) = x/A(x/G(x)^2) is the g.f. of A212411:
G(x) = 1 + x + 2*x^2 + 7*x^3 + 36*x^4 + 235*x^5 + 1792*x^6 + 15261*x^7 +...
Also, A(x)^2 = x*F(A(x)) where F(x) is the g.f. of A213628:
F(x) = x + x^2 + 3*x^3 + 14*x^4 + 85*x^5 + 616*x^6 + 5072*x^7 + 46013*x^8 +...
-
terms = 22; A[] = 0; Do[A[x] = x + A[A[x]]^2 + O[x]^(terms+1) // Normal, terms+1]; CoefficientList[A[x], x] // Rest (* Jean-François Alcover, Jan 09 2018 *)
-
{a(n)=local(A=x); if(n<1, 0, for(i=1, n, A=serreverse(x - A^2+x*O(x^n))); polcoeff(A, n))}
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); for(i=1, n, A=x+sum(m=1, n, Dx(m-1, A^(2*m))/m!)+x*O(x^n)); polcoeff(A, n)}
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); for(i=1, n, A=x*exp(sum(m=1, n, Dx(m-1, A^(2*m)/x)/m!)+x*O(x^n))); polcoeff(A, n)}
for(n=1,21,print1(a(n),", "))
-
b(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(n+j+k, j)/(n+j+k)*b(n-j, 2*j)));
a(n) = b(n-1, 1); \\ Seiichi Manyama, Jun 05 2025
A087949
G.f. satisfies A(x) = 1 + x*A(x*A(x)).
Original entry on oeis.org
1, 1, 1, 2, 5, 16, 59, 246, 1131, 5655, 30428, 174835, 1066334, 6870542, 46581883, 331237074, 2463361903, 19112314727, 154364077009, 1295325828045, 11273167827343, 101589943242179, 946577526626181, 9107029927925714, 90359115887726302, 923509462029444933
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 16*x^5 +...
A(xA(x)) = 1 + x + 2*x^2 + 5*x^3 + 16*x^4 + 59*x^5 +...
Logarithmic series:
log(A(x)) = x/A(x) + [d/dx x^3*A(x)^2]*A(x)^(-4)/2! + [d^2/dx^2 x^5*A(x)^3]*A(x)^(-6)/3! + [d^3/dx^3 x^7*A(x)^4]*A(x)^(-8)/4! +...
Let G(x) = x*A(x) then
x = G(x*[1 - G(x) + 2*G(x)^2 - 5*G(x)^3 + 14*G(x)^4 - 42*G(x)^5 +-...])
where the unsigned coefficients are the Catalan numbers (A000108).
-
A:= proc(n) option remember; `if`(n=0, 1, (T->
unapply(convert(series(1+x*T(x*T(x)), x, n+1)
, polynom), x))(A(n-1)))
end:
a:= n-> coeff(A(n)(x), x, n):
seq(a(n), n=0..25); # Alois P. Heinz, May 15 2016
-
a[n_] := (A=x; If[n<1, 0, For[i=1, i <= n, i++, A = InverseSeries[2*(x/(1 + Sqrt[1 + 4*A + x*O[x]^n]))]]]; SeriesCoefficient[A, {x, 0, n}]); Array[a, 26] (* Jean-François Alcover, Oct 04 2016, adapted from PARI *)
-
{a(n)=my(A=x); if(n<1, 0, for(i=1,n,A=serreverse(2*x/(1 + sqrt(1+4*A +x*O(x^n))))); polcoeff(A, n))}
-
{a(n,m=1)=if(n==0,1,if(m==0,0^n,sum(k=0,n,m*binomial(n-k+m,k)/(n-k+m)*a(n-k,k))))} \\ Paul D. Hanna, Jul 09 2009
-
/* n-th Derivative: */
{Dx(n,F)=my(D=F);for(i=1,n,D=deriv(D));D}
/* G.f. */
{a(n)=my(A=1+x+x*O(x^n));for(i=1,n,A=exp(sum(m=0,n,Dx(m,x^(2*m+1)*A^(m+1))*A^(-2*m-2)/(m+1)!)+x*O(x^n)));polcoeff(A,n)} \\ Paul D. Hanna, Dec 18 2010
A139702
G.f. satisfies: x = A( x + A(x)^2 ).
Original entry on oeis.org
1, -1, 4, -24, 178, -1512, 14152, -142705, 1528212, -17211564, 202460400, -2474708496, 31310415376, -408815254832, 5495451727376, -75907303147652, 1075685334980240, -15618612118252960, 232102241507321384, -3526880759915999016
Offset: 1
G.f.: A(x) = x - x^2 + 4*x^3 - 24*x^4 + 178*x^5 - 1512*x^6 +-...
A(x)^2 = x^2 - 2*x^3 + 9*x^4 - 56*x^5 + 420*x^6 - 3572*x^7 +-...
where A(x + A(x)^2) = x.
Let G(x) = Series_Reversion( A(x) ) = x + A(x)^2, then:
G(x) = x + x^2 - 2*x^3 + 9*x^4 - 56*x^5 + 420*x^6 -+... and
G(G(x)) = x + 2*x^2 - 2*x^3 + 9*x^4 - 56*x^5 + 420*x^6 -+...
so that G(x) = G(G(x)) - x^2 = g.f. of A138740.
Logarithmic series:
log(A(x)/x) = -A(x)^2/x + [d/dx A(x)^4/x]/2! - [d^2/dx^2 A(x)^6/x]/3! + [d^3/dx^3 A(x)^8/x]/4! -+...
-
nmax = 20; sol = {a[1] -> 1}; nmin = Length[sol]+1;
Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[x - A[x + A[x]^2] + O[x]^(n+1), x][[nmin;;]] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, nmin, nmax}];
a /@ Range[nmax] /. sol (* Jean-François Alcover, Nov 06 2019 *)
-
{a(n)=local(A=x); if(n<1, 0, for(i=1,n, A=serreverse(x + (A+x*O(x^n))^2)); polcoeff(A, n))}
-
/* n-th Derivative: */
{Dx(n,F)=local(D=F);for(i=1,n,D=deriv(D));D}
/* G.f.: [Paul D. Hanna, Dec 18 2010] */
{a(n)=local(A=x-x^2+x*O(x^n));for(i=1,n,
A=x*exp(sum(m=0,n,(-1)^(m+1)*Dx(m,A^(2*m+2)/x)/(m+1)!)+x*O(x^n)));polcoeff(A,n)}
A143426
G.f. A(x) satisfies A(x) = 1 + x*A(x*A(x))^2.
Original entry on oeis.org
1, 1, 2, 7, 32, 175, 1086, 7429, 54994, 435120, 3647686, 32192596, 297654824, 2872372828, 28841766844, 300592170551, 3244942353856, 36219458512421, 417365572999944, 4958429472475171, 60659660219655616, 763325035692109389, 9870492111677035538
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 32*x^4 + 175*x^5 + 1086*x^6 +...
A(x*A(x)) = 1 + x + 3*x^2 + 13*x^3 + 70*x^4 + 434*x^5 + 2986*x^6 +...
A(x*A(x))^2 = 1 + 2*x + 7*x^2 + 32*x^3 + 175*x^4 + 1086*x^5 +...
Logarithmic series:
log(A(x)) = x + [d/dx x^3*A(x)^4]*A(x)^(-4)/2! + [d^2/dx^2 x^5*A(x)^6]*A(x)^(-6)/3! + [d^3/dx^3 x^7*A(x)^8]*A(x)^(-8)/4! +...
-
{a(n)=local(A=1+x+x*O(x^n));for(i=0,n,A=1+x*subst(A^2,x,x*A));polcoeff(A,n)}
-
/* n-th Derivative: */
{Dx(n,F)=local(D=F);for(i=1,n,D=deriv(D));D}
/* G.f.: [Paul D. Hanna, Dec 18 2010] */
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,
A=exp(sum(m=0,n,Dx(m,x^(2*m+1)*A^(2*m+2))*A^(-2*m-2)/(m+1)!)+x*O(x^n)));polcoeff(A,n)}
-
a(n, k=1) = if(k==0, 0^n, k*sum(j=0, n, binomial(n-j+k, j)/(n-j+k)*a(n-j, 2*j))); \\ Seiichi Manyama, Jun 05 2025
A182969
G.f. satisfies: A(x) = 1 + x*A(x)^3*A(x*A(x)).
Original entry on oeis.org
1, 1, 4, 23, 159, 1236, 10454, 94401, 899286, 8964253, 92961432, 998600238, 11075132605, 126489183013, 1484601117235, 17876874457054, 220546820252773, 2784446513061287, 35940592329823310, 473893641259375150
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 23*x^3 + 159*x^4 + 1236*x^5 +...
Related expansions:
A(x*A(x)) = 1 + x + 5*x^2 + 35*x^3 + 287*x^4 + 2592*x^5 + 25050*x^6 +...
A(x)^3 = 1 + 3*x + 15*x^2 + 94*x^3 + 675*x^4 + 5331*x^5 + 45274*x^6 +...
Logarithmic series:
log(A(x)) = x*A(x)^2 + [d/dx x^3*A(x)^2]*A(x)^2/2! + [d^2/dx^2 x^5*A(x)^3]*A(x)^3/3! + [d^3/dx^3 x^7*A(x)^4]*A(x)^4/4! +...
-
T(n,m):=if n=m then 1 else m/n*sum(sum(T(n-m,i)*k/i*binomial(2*i-k-1,i-1),i,k,n-m)*binomial(n+k-1,n-1),k,1,n-m); makelist(T(n,1),n,1,10); /* Vladimir Kruchinin, May 07 2012 */
-
/* n-th Derivative: */
{Dx(n,F)=local(D=F);for(i=1,n,D=deriv(D));D}
/* G.f.: */
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,
A=exp(sum(m=0,n,Dx(m,x^(2*m+1)*A^(m+1))*A^(m+1)/(m+1)!)+x*O(x^n)));polcoeff(A,n)}
A143436
G.f. A(x) satisfies A(x) = 1 + x*A(x*A(x))^4.
Original entry on oeis.org
1, 1, 4, 26, 216, 2091, 22532, 263302, 3282572, 43184125, 594892016, 8533187394, 126911650416, 1950679300314, 30905935176876, 503694878376602, 8429969774716104, 144679270141457684, 2543281262706638148, 45745868441595695376, 841201149601799641988, 15801799739741607604585
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 26*x^3 + 216*x^4 + 2091*x^5 + 22532*x^6 +...
A(x*A(x)) = 1 + x + 5*x^2 + 38*x^3 + 356*x^4 + 3801*x^5 + 44508*x^6 +...
A(x*A(x))^4 = 1 + 4*x + 26*x^2 + 216*x^3 + 2091*x^4 + 22532*x^5 +...
-
{a(n)=local(A=1+x+x*O(x^n));for(i=0,n,A=1+x*subst(A^4,x,x*A));polcoeff(A,n)}
-
a(n, k=1) = if(k==0, 0^n, k*sum(j=0, n, binomial(n-j+k, j)/(n-j+k)*a(n-j, 4*j))); \\ Seiichi Manyama, Jun 05 2025
A143437
G.f. A(x) satisfies A(x) = 1 + x*A(x*A(x))^5.
Original entry on oeis.org
1, 1, 5, 40, 405, 4745, 61551, 862050, 12831835, 200874055, 3282575310, 55693595381, 977058059380, 17668078651755, 328497282637520, 6267311264123850, 122498870023756800, 2449635783413544555, 50061311067746399725, 1044531750427750075150, 22233430278290842445120
Offset: 0
G.f.: A(x) = 1 + x + 5*x^2 + 40*x^3 + 405*x^4 + 4745*x^5 + 61551*x^6 +...
A(x*A(x)) = 1 + x + 6*x^2 + 55*x^3 + 620*x^4 + 7940*x^5 + 111166*x^6 +...
A(x*A(x))^5 = 1 + 5*x + 40*x^2 + 405*x^3 + 4745*x^4 + 61551*x^5 +...
-
{a(n)=local(A=1+x+x*O(x^n));for(i=0,n,A=1+x*subst(A^5,x,x*A));polcoeff(A,n)}
-
a(n, k=1) = if(k==0, 0^n, k*sum(j=0, n, binomial(n-j+k, j)/(n-j+k)*a(n-j, 5*j))); \\ Seiichi Manyama, Jun 05 2025
Showing 1-7 of 7 results.
Comments