cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143454 Expansion of 1/(x^k*(1 - x - 3*x^(k+1))) for k=3.

Original entry on oeis.org

1, 4, 7, 10, 13, 25, 46, 76, 115, 190, 328, 556, 901, 1471, 2455, 4123, 6826, 11239, 18604, 30973, 51451, 85168, 140980, 233899, 388252, 643756, 1066696, 1768393, 2933149, 4864417, 8064505, 13369684, 22169131, 36762382, 60955897, 101064949, 167572342
Offset: 0

Views

Author

Alois P. Heinz, Aug 16 2008

Keywords

Comments

a(n) is also the number of length n quaternary words with at least 3 0-digits between any other digits.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 7, 4*a(n-7) equals the number of 4-colored compositions of n with all parts >= 4, such that no adjacent parts have the same color. - Milan Janjic, Nov 27 2011

Crossrefs

3rd column of A143461.

Programs

  • Magma
    [n le 4 select 3*n-2 else Self(n-1) +3*Self(n-4): n in [1..51]]; // G. C. Greubel, May 08 2021
    
  • Maple
    a:= proc(k::nonnegint) local n,i,j; if k=0 then unapply(4^n,n) else unapply((Matrix(k+1, (i,j)-> if (i=j-1) or j=1 and i=1 then 1 elif j=1 and i=k+1 then 3 else 0 fi)^(n+k))[1,1], n) fi end(3): seq(a(n), n=0..50);
  • Mathematica
    a[n_]:= Sum[3^j*Binomial[n-3*j+3, j], {j, 0, (n+3)/3}]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 04 2014, after Vladimir Kruchinin *)
    LinearRecurrence[{1,0,0,3}, {1,4,7,10}, 41] (* G. C. Greubel, May 08 2021 *)
  • Maxima
    a(n):= sum(3^j*binomial(n-3*j+3,j), j,0,(n+3)/3); /* Vladimir Kruchinin, May 24 2011 */
    
  • PARI
    Vec(1/(x^3*(1-x-3*x^4))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
    
  • PARI
    my(p=Mod('x,'x^4-'x^3-3)); a(n) = vecsum(Vec(lift(p^(n+3)))); \\ Kevin Ryde, May 11 2021
    
  • Sage
    def a(n): return 3*n+1 if (n<4) else a(n-1) + 3*a(n-4)
    [a(n) for n in (0..40)] # G. C. Greubel, May 08 2021

Formula

G.f.: (1 + 3*x + 3*x^2 + 3*x^3) / (1 - x - 3*x^4). - R. J. Mathar, Aug 04 2019
a(n) = Sum_{j=0..(n+3)/3} 3^j*C(n-3*j+3,j). - Vladimir Kruchinin, May 24 2011