A143476 Denominator of the coefficient of z^(2n) in the Stirling-like asymptotic expansion of the hyperfactorial function A002109.
1, 720, 7257600, 15676416000, 3476402012160000, 162695614169088000000, 4919915372473221120000000, 60219764159072226508800000000, 507464726196802564122476544000000000, 3288371425755280615513648005120000000000
Offset: 0
Examples
(Glaisher*(1 - 1433/(7257600*z^4) + 1/(720*z^2))*z^(1/12 + (z*(1 + z))/2))/e^(z^2/4). From _Seiichi Manyama_, Aug 31 2018: (Start) c_1 = -1/2 * (B_4*c_0/(3*4)) = 1/720, so a(1) = 720. c_2 = -1/4 * (B_6*c_0/(5*6) + B_4*c_1/(3*4)) = -1433/7257600, so a(2) = 7257600. (End)
References
- Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics, Vol. 36, No. 2, 2007, pp. 251-257. Mathematical Reviews, MR2312537. Zentralblatt MATH, Zbl 1133.11012.
- J. W. L. Glaisher, On The Product 1^1.2^2.3^3 ... n^n, Messenger of Mathematics, 7 (1878), pp. 43-47, see p. 43 eq. (2)
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..148
- Jean-Christophe Pain, Series representations for the logarithm of the Glaisher-Kinkelin constant, arXiv:2304.07629 [math.NT], 2023.
- Eric Weisstein's World of Mathematics, Hyperfactorial
Formula
From Seiichi Manyama, Aug 31 2018: (Start)
Let B_n be the Bernoulli number, and define the sequence {c_n} by the recurrence
c_0 = 1, c_n = (-1/(2*n)) * Sum_{k=0..n-1} B_{2*n-2*k+2}*c_k/((2*n-2*k+1)*(2*n-2*k+2)) for n > 0.
a(n) is the denominator of c_n. (End)
Comments