A001164
Stirling's formula: denominators of asymptotic series for Gamma function.
Original entry on oeis.org
1, 12, 288, 51840, 2488320, 209018880, 75246796800, 902961561600, 86684309913600, 514904800886784000, 86504006548979712000, 13494625021640835072000, 9716130015581401251840000, 116593560186976815022080000, 2798245444487443560529920000, 299692087104605205332754432000000, 57540880724084199423888850944000000
Offset: 0
Gamma(z) ~ sqrt(2 Pi) z^(z-1/2) e^(-z) (1 + 1/(12 z) + 1/(288 z^2) - 139/(51840 z^3) - 571/(2488320 z^4) + ... ), z -> infinity in |arg z| < Pi.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 267, #23.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapters 2 and 43, equations 2:6:1 and 43:6:6 at pages 21, 415.
- Seiichi Manyama, Table of n, a(n) for n = 0..295 (terms 0..100 from T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 257, Eq. 6.1.37.
- S. Brassesco and M. A. Méndez, The asymptotic expansion for the factorial and Lagrange inversion formula, arXiv:1002.3894 [math.CA], 2010.
- V. De Angelis, Stirling's series revisited, Amer. Math. Monthly, 116 (2009), 839-843.
- Peter Luschny, Approximations to the factorial function.
- G. Marsaglia and J. C. W. Marsaglia, A new derivation of Stirling's approximation to n!, Amer. Math. Monthly, 97 (1990), 827-829. MR1080390 (92b:41049)
- T. Müller, Finite group actions and asymptotic expansion of e^P(z), Combinatorica, 17 (4) (1997), 523-554.
- Richard M. Slevinsky, On the use of Hahn's asymptotic formula and stabilized recurrence for a fast, simple, and stable Chebyshev-Jacobi transform, arXiv preprint arXiv:1602.02618 [math.NA], 2016.
- N. M. Temme, The asymptotic expansion of the incomplete gamma function, SIAM J. Math. Anal., 10 (1979), 757-766. [From _N. J. A. Sloane_, Feb 20 2012]
- Nico Temme, Uniform Asymptotics for the incomplete gamma functions starting from negative values of the parameters, arXiv:math/9603218 [math.CA], 1996.
- W. Wang, Unified approaches to the approximations of the gamma function, J. Number Theory (2016).
- Eric Weisstein's World of Mathematics, Stirlings Series
- J. W. Wrench, Jr., Concerning two series for the gamma function, Math. Comp., 22 (1968), 617-626.
-
h := proc(k) option remember; local j; `if`(k=0, 1,
(h(k-1)/k-add((h(k-j)*h(j))/(j+1),j=1..k-1))/(1+1/(k+1))) end:
coeffStirling := n -> h(2*n)*doublefactorial(2*n-1):
seq(denom(coeffStirling(n)), n=0..16); # Peter Luschny, Nov 05 2015
-
Denominator[ Reverse[ Drop[ CoefficientList[ Simplify[ PowerExpand[ Normal[ Series[n!, {n, Infinity, 17}]]Exp[n]/(Sqrt[2Pi n]*n^(n - 17))]], n], 1]]]
h[k_] := h[k] = If[k==0, 1, (h[k-1]/k-Sum[h[k-j]*h[j]/(j+1), {j, 1, k-1}]) / (1+1/(k+1))]; StirlingAsympt[n_] := h[2n]*2^n*Pochhammer[1/2, n]; a[n_] := StirlingAsympt[n] // Denominator; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Oct 12 2015, after Peter Luschny *)
-
a(n)=local(A,m); if(n<1,n==0,A=vector(m=2*n+1,k,1); for(k=2,m,A[k]=(A[k-1]-sum(i=2,k-1,i*A[i]*A[k+1-i]))/(k+1)); denominator(A[m]*m!/2^n/n!)) /* Michael Somos, Jun 09 2004 */
A001163
Stirling's formula: numerators of asymptotic series for Gamma function.
Original entry on oeis.org
1, 1, 1, -139, -571, 163879, 5246819, -534703531, -4483131259, 432261921612371, 6232523202521089, -25834629665134204969, -1579029138854919086429, 746590869962651602203151, 1511513601028097903631961, -8849272268392873147705987190261, -142801712490607530608130701097701
Offset: 0
Gamma(z) ~ sqrt(2*Pi) * z^(z-1/2) * e^(-z) * (1 + 1/(12*z) + 1/(288*z^2) - 139/(51840*z^3) - 571/(2488320*z^4) + ... ), z -> infinity in |arg z| < Pi.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 257, Eq. 6.1.37.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 267, #23.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 2, equation 2:6:1 at page 21.
- Seiichi Manyama, Table of n, a(n) for n = 0..227 (terms 0..100 from T. D. Noe)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 257, Eq. 6.1.37.
- S. Brassesco and M. A. Méndez, The asymptotic expansion for the factorial and Lagrange inversion formula, arXiv:1002.3894 [math.CA], 2010.
- V. De Angelis, Stirling's series revisited, Amer. Math. Monthly, 116 (2009), 839-843.
- N. Elezovic, Asymptotic Expansions of Central Binomial Coefficients and Catalan Numbers, J. Int. Seq. 17 (2014) # 14.2.1
- Peter Luschny, Approximations to the factorial function.
- G. Marsaglia and J. C. W. Marsaglia, A new derivation of Stirling's approximation to n!, Amer. Math. Monthly, 97 (1990), 827-829. MR1080390 (92b:41049)
- T. Mueller, Finite group actions and asymptotic expansion of e^P(z), Combinatorica, 17 (4) (1997), 523-554.
- Richard M. Slevinsky, On the use of Hahn's asymptotic formula and stabilized recurrence for a fast, simple, and stable Chebyshev-Jacobi transform, arXiv preprint arXiv:1602.02618 [math.NA], 2016.
- N. M. Temme, The asymptotic expansion of the incomplete gamma function, SIAM J. Math. Anal., 10 (1979), 757-766. [From _N. J. A. Sloane_, Feb 20 2012]
- W. Wang, Unified approaches to the approximations of the gamma function, J. Number Theory (2016).
- Eric Weisstein's World of Mathematics, Stirling's Series.
- J. W. Wrench, Jr., Concerning two series for the gamma function, Math. Comp., 22 (1968), 617-626.
Cf.
A097303 (see W. Lang link there for a similar numerator sequence which deviates for the first time at entry number 33. Expansion of GAMMA(z) in terms of 1/(k!*z^k) instead of 1/z^k).
-
h := proc(k) option remember; local j; `if`(k=0, 1,
(h(k-1)/k-add((h(k-j)*h(j))/(j+1), j=1..k-1))/(1+1/(k+1))) end:
StirlingAsympt := proc(n) option remember; h(2*n)*2^n*pochhammer(1/2, n) end:
A001163 := n -> numer(StirlingAsympt(n));
seq(A001163(n), n=0..30); # Peter Luschny, Feb 08 2011
-
Numerator[ Reverse[ Drop[ CoefficientList[ Simplify[ PowerExpand[ Normal[ Series[n!, {n, Infinity, 17}]]Exp[n]/(Sqrt[2Pi n]*n^(n - 17))]], n], 1]]]
(* Second program: *)
h[k_] := h[k] = If[k==0, 1, (h[k-1]/k-Sum[h[k-j]*h[j]/(j+1), {j, 1, k-1}]) / (1+1/(k+1))];
StirlingAsympt[n_] := h[2n]*2^n*Pochhammer[1/2, n];
a[n_] := StirlingAsympt[n] // Numerator;
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Oct 12 2015, after Peter Luschny *)
-
a(n)=local(A,m); if(n<1,n==0,A=vector(m=2*n+1,k,1); for(k=2,m,A[k]=(A[k-1]-sum(i=2,k-1,i*A[i]*A[k+1-i]))/(k+1)); numerator(A[m]*m!/2^n/n!)) /* Michael Somos, Jun 09 2004 */
-
def A001163(n):
@cached_function
def h(k):
if k<=0: return 1
S = sum((h(k-j)*h(j))/(j+1) for j in (1..k-1))
return (h(k-1)/k-S)/(1+1/(k+1))
return numerator(h(2*n)*2^n*rising_factorial(1/2,n))
[A001163(n) for n in range(17)] # Peter Luschny, Nov 05 2015
A143475
Numerator of the coefficient of z^(2n) in the Stirling-like asymptotic expansion of the hyperfactorial function A002109.
Original entry on oeis.org
1, 1, -1433, 1550887, -365236274341, 31170363588856607, -2626723351027654662151, 127061942835077684151157039, -5696145248370283185291966600124423, 254326794362835881966596504823903633657, -33203124408022060010631772664020406983485604379
Offset: 0
(Glaisher*(1 - 1433/(7257600*z^4) + 1/(720*z^2))*z^(1/12 + (z*(1 + z))/2))/e^(z^2/4).
From _Seiichi Manyama_, Aug 31 2018: (Start)
c_1 = -1/2 * (B_4*c_0/(3*4)) = 1/720, so a(1) = 1.
c_2 = -1/4 * (B_6*c_0/(5*6) + B_4*c_1/(3*4)) = -1433/7257600, so a(2) = -1433. (End)
- Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics, Vol. 36, No. 2, 2007, pp. 251-257. Mathematical Reviews, MR2312537. Zentralblatt MATH, Zbl 1133.11012.
A317747
Numerator of the coefficient of z^(-n) in the Stirling-like asymptotic expansion of Product_{z=1..n} z^(z^2).
Original entry on oeis.org
1, -1, 1, 259193, -1036793, -201551328007, 9137074752049, 9142431862033871923, -11105299580705049589, -11003865617473929216508154207, 114467620015003245418244743007, 32505236416490926096399421788847363, -254505521478572052318535393350091231, -1828472168539763642032546635313363411876021
Offset: 0
1^(1^2)*2^(2^2)*...*n^(n^2) ~ A_2*n^(n^3/3+n^2/2+n/6)*exp(-n^3/9+n/12)*(1 - 1/(360*n) + 1/(259200*n^2) + 259193/(1959552000*n^3) - 1036793/(2821754880000*n^4) - 201551328007/(5079158784000000*n^5) + ... ).
A317796
Denominator of the coefficient of z^(-n) in the Stirling-like asymptotic expansion of Product_{z=1..n} z^(z^2).
Original entry on oeis.org
1, 360, 259200, 1959552000, 2821754880000, 5079158784000000, 76796880814080000000, 304115648023756800000000, 125121866615488512000000000, 258236518070374430146560000000000, 929651465053347948527616000000000000, 334674527419205261469941760000000000000, 920050700832433373350094438400000000000000
Offset: 0
1^(1^2)*2^(2^2)*...*n^(n^2) ~ A_2*n^(n^3/3+n^2/2+n/6)*exp(-n^3/9+n/12)*(1 - 1/(360*n) + 1/(259200*n^2) + 259193/(1959552000*n^3) - 1036793/(2821754880000*n^4) - 201551328007/(5079158784000000*n^5) + ... ).
A318713
Numerator of the coefficient of z^(-2*n) in the Stirling-like asymptotic expansion of Product_{z=1..n} z^(z^3).
Original entry on oeis.org
1, -1, 1513, -127057907, 7078687551763, -1626209947417109183, 25620826938516570309695021, -67861652779316417663427293866727, 11129902336987204608540488473560076627, -2992048697379116617363098289271338606184087563, 593799837691907572156765292649932318031816367209421
Offset: 0
1^(1^3)*2^(2^3)*...*n^(n^3) ~ A_3*n^(n^4/4+n^3/2+n^2/4-1/120)*exp(-n^4/16+n^/12)*(1 - 1/(5040*n^2) + 1513/(50803200*n^4) - 127057907/(8449588224000*n^6) + 7078687551763/(442893616349184000*n^8) - 1626209947417109183/(55804595659997184000000*n^10) + ... ).
A318714
Denominator of the coefficient of z^(-2*n) in the Stirling-like asymptotic expansion of Product_{z=1..n} z^(z^3).
Original entry on oeis.org
1, 5040, 50803200, 8449588224000, 442893616349184000, 55804595659997184000000, 315568291905804875857920000000, 211531737430299124385080934400000000, 6522145617145034649275530739712000000000, 254485460571619683408716971558739902464000000000
Offset: 0
1^(1^3)*2^(2^3)*...*n^(n^3) ~ A_3*n^(n^4/4+n^3/2+n^2/4-1/120)*exp(-n^4/16+n^/12)*(1 - 1/(5040*n^2) + 1513/(50803200*n^4) - 127057907/(8449588224000*n^6) + 7078687551763/(442893616349184000*n^8) - 1626209947417109183/(55804595659997184000000*n^10) + ... ).
A317660
Denominator of the coefficient of z^(-n) of asymptotic expansions related to hyperfactorial function H(z).
Original entry on oeis.org
1, 1, 1, 720, 1, 5040, 1036800, 10080, 3628800, 24634368000, 6350400, 747242496000, 3476402012160000, 105670656000, 11298306539520000, 1489290622009344000000, 2259661307904000, 6688268793387417600000, 920024174652492349440000000, 8655406673795481600000
Offset: 0
1^1*2^2*...*n^n ~ A*n^(n^2/2 + n/2 + 1/12)*exp(-n^2/4)*(1 + 1/(720*n^3) - 1/(5040*n^5) + 1/(1036800*n^6) + 1/(10080*n^7) - 1/(3628800*n^8) - 2591989/(24634368000*n^9) + ... )^n.
A318711
Denominator of the coefficient of z^(-2*n) in the Stirling-like asymptotic expansion of G(z+1), where G(z) is Barnes G-function.
Original entry on oeis.org
1, 720, 7257600, 15676416000, 3476402012160000, 3320318656512000000, 4919915372473221120000000, 4632289550697863577600000000, 507464726196802564122476544000000000, 173072180302909506079665684480000000000, 49554442037561776763544469977956352000000000000
Offset: 0
G(z+1) ~ A^(-1)*z^(-z^2/2-z/2-1/12)*exp(z^2/4)*(Gamma(z+1))^z*(1 - 1/(720*z^2) + 1447/(7257600*z^4) - 1559527/(15676416000*z^6) + 366331136219/(3476402012160000*z^8) - 637231027521743/(3320318656512000000*z^10) + ... ).
Showing 1-9 of 9 results.
Comments