A143524 Decimal expansion of the (negated) constant in the expansion of the prime zeta function about s = 1.
3, 1, 5, 7, 1, 8, 4, 5, 2, 0, 5, 3, 8, 9, 0, 0, 7, 6, 8, 5, 1, 0, 8, 5, 2, 5, 1, 4, 7, 3, 7, 0, 6, 5, 7, 1, 9, 9, 0, 5, 9, 2, 6, 8, 7, 6, 7, 8, 7, 2, 4, 3, 9, 2, 6, 1, 3, 7, 0, 3, 0, 2, 0, 9, 5, 9, 9, 4, 3, 2, 1, 5, 8, 8, 0, 2, 9, 6, 4, 6, 1, 2, 2, 2, 8, 0, 4, 4, 3, 1, 8, 5, 7, 5, 0, 0, 0, 9, 8, 4, 6, 3, 0, 1
Offset: 0
Examples
-0.315718452053890076851... [corrected by _Georg Fischer_, Jul 29 2021]
References
- Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.2, p. 96.
Links
- Henri Cohen, High precision computation of Hardy-Littlewood constants, preprint, 1998.
- Henri Cohen, High-precision computation of Hardy-Littlewood constants. [pdf copy, with permission]
- Carl-Erik Fröberg, On the prime zeta function, BIT Numerical Mathematics, Vol. 8, No. 3 (1968), pp. 187-202.
- R. J. Mathar, Series of reciprocal powers of k-almost primes, arXiv:0803.0900 [math.NT], 2008-2009, Table 2.
- Mathematics Stack Exchange, Prime Zeta function at 1
- Franz Mertens, Ein Beitrag zur analytischen Zahlentheorie, J. Reine Angew. Math. 78 (1874), pp. 46-62 p. 58.
- Eric Weisstein's World of Mathematics, Prime Zeta Function.
- Wikipedia, Prime zeta function.
Programs
-
Mathematica
digits = 104; S = NSum[PrimeZetaP[n]/n, {n, 2, Infinity}, WorkingPrecision -> digits + 10, NSumTerms -> 3*digits]; RealDigits[S, 10, digits] // First (* Jean-François Alcover, Sep 11 2015 *)
Formula
From Amiram Eldar, Aug 08 2020: (Start)
Equals -Sum{k>=2} mu(k) * log(zeta(k)) / k.
Equals -Sum_{p prime} (1/p + log(1 - 1/p))
Equals Sum_{k>=2} P(k)/k, where P is the prime zeta function. (End)
P(s) = log(zeta(s)) - A143524 + o(1) = log(1/(s-1)) - A143524 + o(1) as s -> 1. - Jianing Song, Jan 10 2024
Extensions
Last digits corrected by Jean-François Alcover, Sep 11 2015
Comments