cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A061397 Characteristic function sequence of primes multiplied componentwise by N, the natural numbers.

Original entry on oeis.org

0, 2, 3, 0, 5, 0, 7, 0, 0, 0, 11, 0, 13, 0, 0, 0, 17, 0, 19, 0, 0, 0, 23, 0, 0, 0, 0, 0, 29, 0, 31, 0, 0, 0, 0, 0, 37, 0, 0, 0, 41, 0, 43, 0, 0, 0, 47, 0, 0, 0, 0, 0, 53, 0, 0, 0, 0, 0, 59, 0, 61, 0, 0, 0, 0, 0, 67, 0, 0, 0, 71, 0, 73, 0, 0, 0, 0, 0, 79, 0, 0, 0, 83, 0, 0, 0, 0, 0, 89, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Labos Elemer, Jun 07 2001

Keywords

Comments

Frequently, holes in a sequence are filled with zeros. This is a canonical way to do this and applied here to primes(A000040). A pre-scalar product when summation is omitted.
Equals row sums of triangle A143536. - Gary W. Adamson, Aug 23 2008
Mobius transform of sum of the distinct primes dividing n (A008472). - Steven Foster Clark, Jun 26 2020

Examples

			If 1<n<=8, a(n)=0 iff it is even on interval [4,9); if 9<=n<=25, then a(n)=0 iff n is either even or multiple of 3 on interval [9,25) etc. - _Vladimir Shevelev_, Apr 24 2010
		

Crossrefs

Cf. A034387 (partial sums).

Programs

Formula

a(n) = A010051(n)*A000027(n).
Dirichlet generating function: primezeta(s-1). - Franklin T. Adams-Watters, Sep 11 2005
a(1)=0; for n>=1, a(n)=0, if either p_1|n or p_2|n or...or p_i|n, when n is in [p_i^2,p_(i+1)^2), i=1,2,..], where p_i is the i-th prime; otherwise a(n)=n. - Vladimir Shevelev, Apr 24 2010
a(n) = n*floor(gcd(((n-1)! + 1)/n,2)). - José de Jesús Camacho Medina, Apr 30 2016
a(n) = n*floor(1/A001065(n)); for n>1. - José de Jesús Camacho Medina, Aug 07 2016
G.f.: x*f'(x), where f(x) = Sum_{k>=1} x^prime(k). - Ilya Gutkovskiy, Apr 10 2017
a(n) = (2*n-1)! mod n^2, by Wilson's theorem. - Thomas Ordowski, Dec 27 2017

A143537 Triangle read by rows: T(n,k) = number of primes in the interval [k..n], n >= 1, 1 <= k <= n.

Original entry on oeis.org

0, 1, 1, 2, 2, 1, 2, 2, 1, 0, 3, 3, 2, 1, 1, 3, 3, 2, 1, 1, 0, 4, 4, 3, 2, 2, 1, 1, 4, 4, 3, 2, 2, 1, 1, 0, 4, 4, 3, 2, 2, 1, 1, 0, 0, 4, 4, 3, 2, 2, 1, 1, 0, 0, 0, 5, 5, 4, 3, 3, 2, 2, 1, 1, 1, 1, 5, 5, 4, 3, 3, 2, 2, 1, 1, 1, 1, 0, 6, 6, 5, 4, 4, 3, 3, 2, 2, 2, 2, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, Aug 23 2008

Keywords

Comments

Old name: triangle read by rows, A000012 * A143536, 1<=k<=n.

Examples

			Triangle T(n,k) begins:
n\k 1  2  3  4  5  6  7  8 ...
1:  0;
2:  1, 1;
3:  2, 2, 1;
4:  2, 2, 1, 0;
5:  3, 3, 2, 1, 1;
6:  3, 3, 2, 1, 1, 0;
7:  4, 4, 3, 2, 2, 1, 1;
8:  4, 4, 3, 2, 2, 1, 1, 0;
...
		

Crossrefs

Row sums are A034387.
Column k=1 gives A000720.
Main diagonal gives A010051.
T(2n,n) gives A035250.
Cf. A143536.

Formula

T(n,k) = pi(n) - pi(k-1), where pi = A000720. - Ilya Gutkovskiy, Mar 19 2020

Extensions

New name and corrected by Ilya Gutkovskiy, Mar 19 2020

A143544 Triangle read by rows, T(n,k) = 2 if n is prime, 1 otherwise; 1<=k<=n.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Gary W. Adamson, Aug 23 2008

Keywords

Comments

Row sums = A143545: (1, 4, 6, 4, 10, 6, 14,...) = componentwise addition of (1, 2, 3, 4, 5,...) and A061397: (0, 2, 3, 0, 5, 0, 7,...).

Examples

			First few rows of the triangle =
1;
2, 2;
2, 2, 2;
1, 1, 1, 1;
2, 2, 2, 2, 2;
1, 1, 1, 1, 1, 1;
2, 2, 2, 2, 2, 2, 2;
...
		

Crossrefs

Programs

  • Mathematica
    Table[1 + Boole[PrimeQ[n]], {n, 11}, {k, n}] // Flatten (* Michael De Vlieger, Oct 31 2021 *)

Formula

Triangle read by rows, T(n,k) = 2 if n is prime, 1 otherwise; 1<=k<=n.
T(n, k) = A143536(n, k) + 1. - Georg Fischer, Oct 31 2021
Showing 1-3 of 3 results.