cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143785 Antidiagonal sums of the triangle A120070.

Original entry on oeis.org

3, 8, 20, 36, 63, 96, 144, 200, 275, 360, 468, 588, 735, 896, 1088, 1296, 1539, 1800, 2100, 2420, 2783, 3168, 3600, 4056, 4563, 5096, 5684, 6300, 6975, 7680, 8448, 9248, 10115, 11016, 11988, 12996, 14079, 15200, 16400, 17640, 18963, 20328, 21780, 23276
Offset: 1

Views

Author

Paul Curtz, Sep 01 2008

Keywords

Comments

Let b(n) be the sequence (0,0,0,3,8,20,36,...), with offset 0. Then b(n) is the number of triples (w,x,y) having all terms in {0,...,n} and w < range{w,x,y}. - Clark Kimberling, Jun 11 2012
Consider a(n) with two 0's prepended and offset 1. Call the new sequence b(n) and consider the partitions of n into two parts (p,q). Then b(n) represents the sum of all the products (p + q) * (q - p) where p <= q. - Wesley Ivan Hurt, Apr 12 2018

Examples

			First diagonal 3 = 3.
Second diagonal 8 = 8.
Third diagonal 5+15 = 20.
Fourth diagonal 24+12 = 36.
		

Crossrefs

Cf. A035006, A099721 (bisections).

Programs

  • Magma
    [(n+2)*(2*n^2+4*n-(-1)^n+1)/8: n in [1..50]]; // Vincenzo Librandi, Jan 22 2018
  • Mathematica
    Rest@ CoefficientList[Series[x (3 + 2 x + x^2)/((1 + x)^2*(x - 1)^4), {x, 0, 44}], x] (* Michael De Vlieger, Dec 22 2017 *)
    LinearRecurrence[{2, 1, -4, 1, 2, -1}, {3, 8, 20, 36, 63, 96}, 60] (* Vincenzo Librandi, Jan 22 2018 *)
  • PARI
    Vec(x*(3+2*x+x^2)/((1+x)^2*(x-1)^4) + O(x^50)) \\ Colin Barker, May 07 2016
    

Formula

a(n+1) - a(n) = A032438(n+2).
a(n) = A006918(n-2) + 2*A006918(n-1) + 3*A006918(n). - R. J. Mathar, Jul 01 2011
G.f.: x*(3+2*x+x^2) / ( (1+x)^2*(x-1)^4 ). - R. J. Mathar, Jul 01 2011
a(n) = (n+2)*(2*n^2 + 4*n - (-1)^n + 1)/8. - Ilya Gutkovskiy, May 07 2016
From Colin Barker, May 07 2016: (Start)
a(n) = (n^3 + 4*n^2 + 4*n)/4 for n even.
a(n) = (n^3 + 4*n^2 + 5*n + 2)/4 for n odd.
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6) for n > 6. (End)
a(n) = Sum_{k=1..n+1} floor((n+1)*k/2). - Wesley Ivan Hurt, Apr 01 2017
a(n) = (n+2)*floor((n+1)^2/4) ( = (n+2)*A002620(n+1) ) for n > 0. - Heinrich Ludwig, Dec 22 2017
E.g.f.: e^(-x) * (-2 + x + e^(2*x)*(2 + 19*x + 14*x^2 + 2*x^3))/8. - Iain Fox, Dec 29 2017