A143815 Let A(0)=1, B(0)=0 and C(0)=0. Let B(n+1) = Sum_{k = 0..n} binomial(n,k)*A(k), C(n+1) = Sum_{k = 0..n} binomial(n,k)*B(k) and A(n+1) = Sum_{k = 0..n} binomial(n,k)*C(k). This entry gives the sequence A(n).
1, 0, 0, 1, 6, 25, 91, 322, 1232, 5672, 32202, 209143, 1432454, 9942517, 69363840, 490303335, 3565609732, 27118060170, 218183781871, 1861370544934, 16729411124821, 156706028787827, 1514442896327792, 14999698898942772, 151838974745743228, 1571513300578303070
Offset: 0
Examples
R(n) as a linear combination of R(i), i = 0..2. ================================== R(n) | R(0) R(1) R(2) ================================== R(3) | 1 -2 3 R(4) | 6 -5 7 R(5) | 25 -5 16 R(6) | 91 20 46 R(7) | 322 149 203 R(8) | 1232 552 1178 R(9) | 5672 991 7242 R(10) | 32202 -3799 43786 ... Column 2 of the above table is A143818. R(n) as a linear combination of R(0),R(1) and R(2) - R(1). ===================================== R(n) | R(0) R(1) R(2)-R(1) ===================================== R(3) | 1 1 3 R(4) | 6 2 7 R(5) | 25 11 16 R(6) | 91 66 46 R(7) | 322 352 203 R(8) | 1232 1730 1178 R(9) | 5672 8233 7242 R(10) | 32202 39987 43786 ...
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..576
- Eric Weisstein's World of Mathematics, Bell Polynomial.
Crossrefs
Programs
-
Maple
# (1) M:=24: a:=array(0..100): b:=array(0..100): c:=array(0..100): a[0]:=1: b[0]:=0: c[0]:=0: for n from 1 to M do b[n]:=add(binomial(n-1,k)*a[k], k=0..n-1); c[n]:=add(binomial(n-1,k)*b[k], k=0..n-1); a[n]:=add(binomial(n-1,k)*c[k], k=0..n-1); end do: A143815:=[seq(a[n], n=0..M)]; # (2) seq(add(Stirling2(n,3*i),i = 0..floor(n/3)), n = 0..24); # third Maple program: b:= proc(n, t) option remember; `if`(n=0, irem(t, 2), add(b(n-j, irem(t+1, 3))*binomial(n-1, j-1), j=1..n)) end: a:= n-> b(n, 1): seq(a(n), n=0..25); # Alois P. Heinz, Feb 20 2018
-
Mathematica
a = Exp[x] - 1; f[x_] := 1/3 (E^x + 2 E^(-x/2) Cos[(Sqrt[3] x)/2]); CoefficientList[Series[f[a], {x, 0, 25}], x]*Table[n!, {n, 0, 25}] (* Geoffrey Critzer, Mar 05 2010 *)
-
PARI
Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!); a(n) = my(w=(-1+sqrt(3)*I)/2); round(Bell_poly(n, 1)+Bell_poly(n, w)+Bell_poly(n, w^2))/3; \\ Seiichi Manyama, Oct 13 2022
Formula
a(n) = Sum_{k = 0..floor(n/3)} Stirling2(n, 3*k).
Let w = exp(2*Pi*i/3) and set F(x) = (exp(x) + exp(w*x) + exp(w^2*x))/3 = 1 + x^3/3! + x^6/6! + ... . Then the e.g.f. for the sequence is F(exp(x) - 1).
E.g.f. is B(A(x)) where A(x) = exp(x) - 1 and B(x) = (1/3)*(exp(x) + 2*exp(-x/2)*cos(sqrt(3)*x/2)). - Geoffrey Critzer, Mar 05 2010
a(n) = ( Bell_n(1) + Bell_n(w) + Bell_n(w^2) )/3, where Bell_n(x) is n-th Bell polynomial and w = exp(2*Pi*i/3). - Seiichi Manyama, Oct 13 2022
a(n) ~ n^n / (3 * (LambertW(n))^n * exp(n+1-n/LambertW(n)) * sqrt(1+LambertW(n))). - Vaclav Kotesovec, Jun 10 2025
Comments