A143819 Decimal expansion of Sum_{k>=0} 1/(3*k)!.
1, 1, 6, 8, 0, 5, 8, 3, 1, 3, 3, 7, 5, 9, 1, 8, 5, 2, 5, 5, 1, 6, 2, 5, 6, 9, 2, 9, 6, 1, 1, 1, 4, 4, 7, 4, 7, 7, 1, 6, 9, 3, 3, 2, 9, 5, 1, 1, 3, 2, 9, 2, 5, 1, 6, 3, 8, 5, 8, 9, 1, 2, 3, 2, 6, 8, 5, 1, 1, 3, 4, 4, 6, 4, 7, 3, 2, 0, 5, 5, 7, 1, 7, 9, 0, 8, 7, 2, 4, 8, 0, 5, 8, 5, 5, 1, 9, 1, 8, 9, 6
Offset: 1
Examples
1.168058313375918525516256929611144747716933295113292516385891232685... R(n) as a linear combination of R(0), R(1) and R(2) - R(1). ======================================= R(n) | R(0) R(1) R(2)-R(1) ======================================= R(3) | 1 1 3 R(4) | 6 2 7 R(5) | 25 11 16 R(6) | 91 66 46 R(7) | 322 352 203 R(8) | 1232 1730 1178 R(9) | 5672 8233 7242 R(10) | 32202 39987 43786 ... The column entries are from A143815, A143816 and A143817.
Links
- D. Bowman and J. Mc Laughlin, Polynomial continued fractions, arXiv:1812.08251 [math.NT], 2018; Acta Arith. 103 (2002), no. 4, 329-342.
- Michael Penn, Two sum identities, YouTube video, 2020.
- Michael I. Shamos, A catalog of the real numbers, (2011). See p. 209.
Crossrefs
Programs
-
Mathematica
RealDigits[ N[ 1/3*(2*Cos[Sqrt[3]/2]/Sqrt[E] + E), 105]][[1]] (* Jean-François Alcover, Nov 08 2012 *) With[{nn=120},RealDigits[N[Total[Table[1/(3n)!,{n,nn}]]+1,nn],10,nn][[1]]] (* Harvey P. Dale, Apr 20 2013 *)
-
PARI
suminf(k=0, 1/(3*k)!) \\ Michel Marcus, Feb 21 2016
Formula
Equals (exp(1) + exp(w) + exp(w^2))/3, where w = exp(2*Pi*i/3).
Equals 1/3 * (e + 2 * cos(sqrt(3)/2) / sqrt(e)). - Bernard Schott, Mar 01 2020
Sum_{k>=0} (-1)^k / (3*k)! = (exp(-1) + 2*exp(1/2)*cos(sqrt(3)/2))/ 3 = 0.83471946857721... - Vaclav Kotesovec, Mar 02 2020
Continued fraction: 1 + 1/(6 - 6/(121 - 120/(505 - ... - P(n-1)/((P(n) + 1) - ... )))), where P(n) = (3*n )*(3*n - 1)*(3*n - 2) for n >= 1. Cf. A346441. - Peter Bala, Feb 22 2024
Extensions
Offset corrected by R. J. Mathar, Feb 05 2009
New name from Bernard Schott, Mar 02 2020
Comments