A143820 Decimal expansion of the constant 1/1! + 1/4! + 1/7! + ...
1, 0, 4, 1, 8, 6, 5, 3, 5, 5, 0, 9, 8, 9, 0, 9, 8, 4, 6, 3, 0, 1, 3, 3, 6, 6, 1, 5, 0, 2, 1, 5, 2, 7, 3, 8, 7, 6, 9, 7, 0, 8, 3, 5, 7, 1, 7, 2, 4, 1, 6, 3, 4, 5, 9, 5, 4, 5, 7, 3, 9, 2, 5, 5, 4, 2, 3, 5, 5, 1, 7, 4, 1, 1, 6, 1, 0, 7, 4, 0, 2, 9, 5, 9, 2, 8, 6, 2, 6, 7, 3, 9, 3, 0, 1, 0, 0, 6, 5, 5, 2
Offset: 1
Examples
1.041865355098909...
Links
- Michael I. Shamos, A catalog of the real numbers, (2011). See p. 76.
- Abraham Ungar, Generalized Hyperbolic Functions, The American Mathematical Monthly, Volume 89, 1982, 688-691.
Programs
-
Maple
Digits:=101: evalf(sum(1/(3*n+1)!, n=0..infinity)); # Michal Paulovic, Aug 20 2023
-
Mathematica
RealDigits[ N[ (-Cos[Sqrt[3]/2] + E^(3/2) + Sqrt[3]*Sin[Sqrt[3]/2])/(3*Sqrt[E]), 105]][[1]] (* Jean-François Alcover, Nov 08 2012 *)
-
PARI
suminf(n=0,1/(3*n+1)!) \\ Michel Marcus, Aug 20 2023
Formula
Equals (exp(1) + w^2*exp(w) + w*exp(w^2))/3, where w = exp(2*Pi*i/3).
Equals Sum_{n>=0} 1/(3*n+1)!. - Michal Paulovic, Aug 20 2023
Continued fraction: 1 + 1/(24 - 24/(211 - 210/(721 - ... - P(n-1)/((P(n) + 1) - ... )))), where P(n) = (3*n - 1)*(3*n)*(3*n + 1) for n >= 1. Cf. A346441. - Peter Bala, Feb 22 2024
Equals (exp(1) + 2*exp(-1/2)*cos(sqrt(3)/2-2*Pi/3))/3. [Ungar, p.690] - Michael Somos, Nov 01 2024
Extensions
Offset corrected by R. J. Mathar, Feb 05 2009
Comments