A143862 Number of compositions of n such that every part is divisible by number of parts.
1, 1, 1, 1, 2, 1, 3, 1, 4, 2, 5, 1, 9, 1, 7, 7, 9, 1, 19, 1, 14, 16, 11, 1, 43, 2, 13, 29, 34, 1, 56, 1, 51, 46, 17, 16, 130, 1, 19, 67, 139, 1, 105, 1, 142, 162, 23, 1, 315, 2, 151, 121, 246, 1, 219, 211, 321, 154, 29, 1, 1021, 1, 31, 219, 488, 496, 495, 1, 594, 232, 834, 1, 1439, 1
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Programs
-
PARI
{a(n) = if(n==0,1, sumdiv(n,d, binomial(n/d-1,d-1) ))} for(n=0,50, print1(a(n),", ")) \\ Paul D. Hanna, Apr 25 2018
Formula
G.f.: Sum_{k>=0} x^(k^2) / (1 - x^k)^k.
G.f.: 1 + Sum_{n>=1} (1 + x^n)^(n-1) * x^n. - Paul D. Hanna, Jul 09 2019
a(n) = Sum_{d|n} binomial(n/d-1, d-1) for n>0 with a(0) = 1. - Paul D. Hanna, Apr 25 2018
G.f.: 1 + Sum_{n>=1} (x^n/(1-x^n))^n (conjecture). - Joerg Arndt, Jan 04 2024
For prime p, a(p) = 1, a(2*p) = p and a(p^2) = 2. - Peter Bala, Mar 02 2025
Extensions
More terms from Franklin T. Adams-Watters, Apr 09 2009