A143978 a(n) = floor(2*n*(n+1)/3).
1, 4, 8, 13, 20, 28, 37, 48, 60, 73, 88, 104, 121, 140, 160, 181, 204, 228, 253, 280, 308, 337, 368, 400, 433, 468, 504, 541, 580, 620, 661, 704, 748, 793, 840, 888, 937, 988, 1040, 1093, 1148, 1204, 1261, 1320, 1380, 1441, 1504, 1568, 1633, 1700, 1768, 1837
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Bruno Berselli, Illustration of the initial terms.
- P. Morillo and Miquel A. Fiol, El diámetro de ciertos digrafos circulantes de triple paso, Stochastica X (1986), no. 3, 233-249.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-2,1).
Crossrefs
Programs
-
Maple
A143978:= n-> (6*n*(n+1) -1 + `mod`(n+2,3) - `mod`(n+1,3))/9; seq(A143978(n), n=1..60); # G. C. Greubel, May 27 2020
-
Mathematica
Table[(6*n^2 +6*n -1 + Mod[n+2, 3] - Mod[n+1, 3])/9, {n, 60}] (* G. C. Greubel, May 27 2020 *) Table[Floor[2n (n+1)/3],{n,60}] (* or *) LinearRecurrence[{2,-1,1,-2,1},{1,4,8,13,20},60] (* Harvey P. Dale, Aug 12 2025 *)
Formula
From R. J. Mathar, Oct 05 2009: (Start)
G.f.: x*(1 + x)^2/((1 + x + x^2)*(1-x)^3).
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5). (End)
a(n) = Sum_{k=1..(n+1)} A042965(k). - Klaus Purath, May 23 2020
From G. C. Greubel, May 27 2020: (Start)
a(n) = (ChebyshevU(n, -1/2) - ChebyshevU(n-1, -1/2) + (6*n^2 + 6*n -1))/9.
a(n) = (JacobiSymbol(n+1, 3) - JacobiSymbol(n, 3) + (6*n^2 + 6*n -1))/9.
Sum_{n>=1} 1/a(n) = 3/2 + (tan(Pi/(2*sqrt(3)))-1)*Pi/(2*sqrt(3)). - Amiram Eldar, Sep 27 2022
E.g.f.: exp(-x/2)*(exp(3*x/2)*(6*x^2 + 12*x - 1) + cos(sqrt(3)*x/2) - sqrt(3)*sin(sqrt(3)*x/2))/9. - Stefano Spezia, Apr 05 2023
Comments