cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143978 a(n) = floor(2*n*(n+1)/3).

Original entry on oeis.org

1, 4, 8, 13, 20, 28, 37, 48, 60, 73, 88, 104, 121, 140, 160, 181, 204, 228, 253, 280, 308, 337, 368, 400, 433, 468, 504, 541, 580, 620, 661, 704, 748, 793, 840, 888, 937, 988, 1040, 1093, 1148, 1204, 1261, 1320, 1380, 1441, 1504, 1568, 1633, 1700, 1768, 1837
Offset: 1

Views

Author

Clark Kimberling, Sep 06 2008

Keywords

Comments

Second diagonal of array A143979, which counts certain unit squares in a lattice. First diagonal: A030511.
Convolution of A042965 with A000012, convolution of A131534 with A000027, and convolution of A106510 with A000217. - L. Edson Jeffery, Jan 24 2015
From Miquel A. Fiol, Aug 31 2024: (Start)
a(n+1) is the maximum number N of vertices of a circulant digraph with steps +-s1, s2, and diameter n.
Depending on the value of n, the following table shows the values of N, s1, and s2:
n | 3*r | 3*r-1 | 3*r-2 |
N | 6*r^2+6*r+1 | 6*r^2+2*r | 6*r^2-2*r |
s1 | 1 | r | r |
s2 | 6*r+3 | 3*r+1 | 3*r-1 |
(End)

Crossrefs

Cf. A000217, A030511, A042965 (first differences), A106510, A131534, A143979.

Programs

  • Maple
    A143978:= n-> (6*n*(n+1) -1 + `mod`(n+2,3) - `mod`(n+1,3))/9;
    seq(A143978(n), n=1..60); # G. C. Greubel, May 27 2020
  • Mathematica
    Table[(6*n^2 +6*n -1  + Mod[n+2, 3] - Mod[n+1, 3])/9, {n, 60}] (* G. C. Greubel, May 27 2020 *)
    Table[Floor[2n (n+1)/3],{n,60}] (* or *) LinearRecurrence[{2,-1,1,-2,1},{1,4,8,13,20},60] (* Harvey P. Dale, Aug 12 2025 *)

Formula

From R. J. Mathar, Oct 05 2009: (Start)
G.f.: x*(1 + x)^2/((1 + x + x^2)*(1-x)^3).
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5). (End)
a(n) = Sum_{k=1..(n+1)} A042965(k). - Klaus Purath, May 23 2020
From G. C. Greubel, May 27 2020: (Start)
a(n) = (ChebyshevU(n, -1/2) - ChebyshevU(n-1, -1/2) + (6*n^2 + 6*n -1))/9.
a(n) = (JacobiSymbol(n+1, 3) - JacobiSymbol(n, 3) + (6*n^2 + 6*n -1))/9.
a(n) = (A102283(n+1) - A102283(n) + A103115(n+1))/9
a(n) = (A131713(n) + A103115(n+1))/9. (End)
Sum_{n>=1} 1/a(n) = 3/2 + (tan(Pi/(2*sqrt(3)))-1)*Pi/(2*sqrt(3)). - Amiram Eldar, Sep 27 2022
E.g.f.: exp(-x/2)*(exp(3*x/2)*(6*x^2 + 12*x - 1) + cos(sqrt(3)*x/2) - sqrt(3)*sin(sqrt(3)*x/2))/9. - Stefano Spezia, Apr 05 2023