cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144067 Euler transform of powers of 3.

Original entry on oeis.org

1, 3, 15, 64, 276, 1137, 4648, 18585, 73494, 286834, 1108470, 4243128, 16111333, 60718488, 227302086, 845689753, 3128786415, 11515509603, 42179651417, 153808740042, 558532554942, 2020325112767, 7281212274165, 26151068072301, 93618849857345, 334119804933861
Offset: 0

Views

Author

Alois P. Heinz, Sep 09 2008

Keywords

Crossrefs

3rd column of A144074. Row sums of A275414.
Cf. A256142.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[1/(1-x^k)^(3^k): k in [1..m]]) )); // G. C. Greubel, Nov 09 2018
  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: a:=n-> etr(j->3^j)(n): seq(a(n), n=0..40);
  • Mathematica
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b]; a[n_] := etr[Function[3^#]][n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 09 2015, after Alois P. Heinz *)
    CoefficientList[Series[Product[1/(1-x^k)^(3^k), {k, 1, 30}], {x, 0, 30}], x] (* G. C. Greubel, Nov 09 2018 *)
  • PARI
    m=30; x='x+O('x^m); Vec(prod(k=1,m,1/(1-x^k)^(3^k))) \\ G. C. Greubel, Nov 09 2018
    

Formula

G.f.: Product_{j>0} 1/(1-x^j)^(3^j).
a(n) ~ 3^n * exp(2*sqrt(n) - 1/2 + c) / (2 * sqrt(Pi) * n^(3/4)), where c = Sum_{m>=2} 1/(m*(3^(m-1)-1)) = 0.3047484092142751906436952201501007636114175... . - Vaclav Kotesovec, Mar 14 2015
G.f.: exp(3*Sum_{k>=1} x^k/(k*(1 - 3*x^k))). - Ilya Gutkovskiy, Nov 09 2018