cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A144088 T(n,k) is the number of partial bijections (or subpermutations) of an n-element set with exactly k fixed points.

Original entry on oeis.org

1, 1, 1, 4, 2, 1, 18, 12, 3, 1, 108, 72, 24, 4, 1, 780, 540, 180, 40, 5, 1, 6600, 4680, 1620, 360, 60, 6, 1, 63840, 46200, 16380, 3780, 630, 84, 7, 1, 693840, 510720, 184800, 43680, 7560, 1008, 112, 8, 1, 8361360, 6244560, 2298240, 554400, 98280, 13608, 1512, 144, 9, 1
Offset: 0

Views

Author

Abdullahi Umar, Sep 11 2008, Sep 16 2008

Keywords

Examples

			Triangle begins:
      1;
      1,     1;
      4,     2,     1;
     18,    12,     3,    1;
    108,    72,    24,    4,   1;
    780,   540,   180,   40,   5,  1;
   6600,  4680,  1620,  360,  60,  6, 1;
  63840, 46200, 16380, 3780, 630, 84, 7, 1;
  ...
T(3,1) = 12 because there are exactly 12 partial bijections (on a 3-element set) with exactly 1 fixed point, namely: (1)->(1), (2)->(2), (3)->(3), (1,2)->(1,3), (1,2)->(3,2), (1,3)->(1,2), (1,3)->(2,3), (2,3)->(2,1), (2,3)->(1,3), (1,2,3)->(1,3,2), (1,2,3)->(3,2,1), (1,2,3)->(2,1,3) -- the mappings are coordinate-wise.
		

Crossrefs

T(n, 0) = A144085, T(n, 1) = A144086, T(n, 2) = A144087.
Row sums give A002720.

Programs

  • Mathematica
    max = 7; f[x_, k_] := (x^k/k!)*(Exp[x^2/(1-x)]/(1-x)); t[n_, k_] := n!*SeriesCoefficient[ Series[ f[x, k], {x, 0, max}], n]; Flatten[ Table[ t[n, k], {n, 0, max}, {k, 0, n}]](* Jean-François Alcover, Mar 12 2012, from e.g.f. by Joerg Arndt *)
  • PARI
    T(n) = {my(egf=exp(log(1/(1-x) + O(x*x^n)) - x + y*x + x/(1-x))); Vec([Vecrev(p) | p<-Vec(serlaplace(egf))])}
    { my(A=T(10)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Nov 29 2021

Formula

T(n,k) = C(n,k)*(n-k)! * Sum_{m=0..n-k} (-1^m/m!)*Sum_{j=0..n-m} C(n-m,j)/j!.
(n-k)*T(n,k) = n*(2n-2k-1)*T(n-1,k) - n*(n-1)*(n-k-3)*T(n-2,k) - n*(n-1)*(n-2)*T(n-3,k), T(k,k)=1 and T(n,k)=0 if n < k.
E.g.f.: exp(log(1/(1-x)) - x + y*x)*exp(x/(1-x)). - Geoffrey Critzer, Nov 29 2021
T(n,k) = (n!/k!) * Sum_{j=0..n-k} binomial(j,n-k-j)/(n-k-j)!. - Seiichi Manyama, Aug 06 2024

Extensions

Terms a(36) and beyond from Andrew Howroyd, Nov 29 2021

A373651 Expansion of (1 - 2*x + 3*x^2)/(1 - 2*x - 3*x^2)^(5/2).

Original entry on oeis.org

1, 3, 18, 70, 285, 1071, 3948, 14148, 49815, 172645, 590898, 2000934, 6714799, 22358805, 73947240, 243114552, 795083931, 2588073201, 8389033710, 27089339130, 87174634239, 279653734437, 894553405452, 2853968436900, 9083209323825, 28844069541651, 91405399485078
Offset: 0

Views

Author

Seiichi Manyama, Aug 06 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec((1-2*x+3*x^2)/(1-2*x-3*x^2)^(5/2))

Formula

a(n) = binomial(n+2,2) * Sum_{k=0..n} binomial(n,k) * binomial(k,n-k).
a(n) = binomial(n+2,2) * A002426(n).
a(n) = A132885(n+4,2).
a(n) = ((n+2)/n^2) * ((2*n-1)*a(n-1) + 3*(n+1)*a(n-2)).

A144091 T(n,k) is the number of partial bijections (or subpermutations) of an n-element set of height k (height(alpha) = |Im(alpha)|) and with exactly 2 fixed points.

Original entry on oeis.org

1, 3, 0, 6, 12, 6, 10, 60, 90, 20, 15, 180, 630, 660, 135, 21, 420, 2730, 6720, 5565, 924, 28, 840, 8820, 39760, 76020, 51912, 7420, 36, 1512, 23436, 168840, 585900, 917784, 533988, 66744
Offset: 2

Views

Author

Abdullahi Umar, Sep 11 2008

Keywords

Examples

			T(4,2) = 6 because there are exactly 6 partial bijections (on a 4-element set) with exactly 2 fixed points and of height 2, namely: the 6 partial identities on 2-element subsets of the 4-element set.
		

Crossrefs

Row sums are A144087.

Programs

  • PARI
    T(n,k) = (n!/2!*(n-k)!)*sum(m=0,k-2,((-1)^m/m!)*binomial(n-2-m,k-2-m))
    for (n=2, 10, for (k=2, n, print1(T(n,k), ", "))) \\ Michel Marcus, Apr 27 2016

Formula

T(n,k) = (n!/2!(n-k)!)sum(m=0,k-2,(-1^m/m!)C(n-2-m,k-2-m)).
Showing 1-3 of 3 results.