A144130 a(n) = ChebyshevT(4, n).
1, 1, 97, 577, 1921, 4801, 10081, 18817, 32257, 51841, 79201, 116161, 164737, 227137, 305761, 403201, 522241, 665857, 837217, 1039681, 1276801, 1552321, 1870177, 2234497, 2649601, 3120001, 3650401, 4245697, 4910977, 5651521
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Cf. A144129.
Programs
-
Magma
[8*n^4-8*n^2+1: n in [0..30]]; // Vincenzo Librandi, May 30 2014
-
Maple
A144130:=n->8*n^4-8*n^2+1: seq(A144130(n), n=0..60); # Wesley Ivan Hurt, Apr 10 2017
-
Mathematica
Table[ChebyshevT[4, n], {n, 0, 50}] (* Vincenzo Librandi, May 30 2014 *)
Formula
From Paul Barry, Nov 17 2009: (Start)
G.f.: (1-4x+102x^2+92x^3+x^4)/(1-x)^5;
a(n) = 8*n^4-8*n^2+1. (End)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Wesley Ivan Hurt, Mar 15 2023
Extensions
Changed offset from 1 to 0 by Vincenzo Librandi, May 30 2014