A144138 Chebyshev polynomial of the second kind U(3,n).
0, 4, 56, 204, 496, 980, 1704, 2716, 4064, 5796, 7960, 10604, 13776, 17524, 21896, 26940, 32704, 39236, 46584, 54796, 63920, 74004, 85096, 97244, 110496, 124900, 140504, 157356, 175504, 194996, 215880, 238204, 262016, 287364, 314296, 342860, 373104, 405076
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[8*n^3-4*n: n in [0..40]]; // Vincenzo Librandi, May 29 2014
-
Mathematica
Table[ChebyshevU[3,n], {n,0,100}] (* and *) Table[4n*(2*n^2-1), {n,0,100}] CoefficientList[Series[4 x (1 + 10 x + x^2)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, May 29 2014 *) LinearRecurrence[{4,-6,4,-1},{0,4,56,204},40] (* Harvey P. Dale, Dec 23 2022 *)
Formula
G.f.: 4*x*(1 + 10*x + x^2)/(1 - x)^4. - Vincenzo Librandi, May 29 2014
a(n) = 4*n*(2*n^2-1). - Vincenzo Librandi, May 29 2014