A144139 Chebyshev polynomial of the second kind U(4,n).
1, 5, 209, 1189, 3905, 9701, 20305, 37829, 64769, 104005, 158801, 232805, 330049, 454949, 612305, 807301, 1045505, 1332869, 1675729, 2080805, 2555201, 3106405, 3742289, 4471109, 5301505, 6242501, 7303505, 8494309, 9825089, 11306405
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
[16*n^4-12*n^2+1: n in [0..40]]; // Vincenzo Librandi, May 29 2014
-
Mathematica
lst={}; Do[AppendTo[lst, ChebyshevU[4, n]], {n, 0, 9^2}]; lst CoefficientList[Series[(1 + 194 x^2 + 184 x^3 + 5 x^4)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, May 29 2014 *)
Formula
G.f.: (1 + 194*x^2 + 184*x^3 + 5*x^4)/(1 - x)^5. - Vincenzo Librandi, May 29 2014
a(n) = 16*n^4-12*n^2+1 = (4*n^2-2*n-1)*(4*n^2+2*n-1). - Vincenzo Librandi, May 29 2014
From Klaus Purath, Sep 08 2022: (Start)
a(n) = A057722(2*n).
(End)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Wesley Ivan Hurt, Aug 04 2025
Extensions
Changed offset from 1 to 0 by Vincenzo Librandi, May 29 2014