cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144186 Numerators of series expansion of the e.g.f. for the Catalan numbers.

Original entry on oeis.org

1, 1, 1, 5, 7, 7, 11, 143, 143, 2431, 4199, 4199, 7429, 7429, 7429, 215441, 392863, 392863, 20677, 765049, 765049, 31367009, 58642669, 58642669, 2756205443, 2756205443, 2756205443, 146078888479, 5037203051, 5037203051, 9586934839
Offset: 0

Views

Author

Eric W. Weisstein, Sep 13 2008

Keywords

Examples

			E.g.f. = 1 + x + x^2 + (5*x^3)/6 + (7*x^4)/12 + ...
The coefficients continue like this: 1, 1, 1, 5/6, 7/12, 7/20, 11/60, 143/1680, 143/4032, 2431/181440, 4199/907200, 4199/2851200, 7429/17107200, 7429/62270208, ...
		

Crossrefs

Programs

  • Magma
    [Numerator(Binomial(2*n,n)/Factorial(n+1)): n in [0..30]]; // G. C. Greubel, Jan 17 2019
    
  • Maple
    seq(numer(binomial(2*n,n)/(n+1)!),n=0..30); # Vladeta Jovovic, Dec 03 2008
  • Mathematica
    With[{m = 30}, CoefficientList[Series[E^(2*x)*(BesselI[0, 2*x] - BesselI[1, 2*x]), {x, 0, m}], x]]//Numerator (* G. C. Greubel, Jan 17 2019 *)
  • PARI
    vector(30, n, n--; numerator(binomial(2*n,n)/(n+1)!)) \\ G. C. Greubel, Jan 17 2019
    
  • Sage
    [numerator(binomial(2*n,n)/factorial(n+1)) for n in (0..30)] # G. C. Greubel, Jan 17 2019

Formula

The e.g.f. is Sum_{n >= 0} (x^n/n!)*binomial(2n,n)/(n+1).
E.g.f.: exp(2*x)*(BesselI(0, 2*x) - BesselI(1, 2*x)).