A144223 Number of ways of placing n labeled balls into n unlabeled (but 6-colored) boxes.
1, 6, 42, 330, 2850, 26682, 268098, 2869242, 32510850, 388109562, 4861622850, 63682081530, 869725707522, 12352785293562, 182049635623362, 2778394592545530, 43833623157604482, 713738052924821754
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
- N. J. A. Sloane, Transforms
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, (1+add(binomial(n-1, k-1)*a(n-k), k=1..n-1))*6) end: seq(a(n), n=0..25); # Alois P. Heinz, Oct 09 2008
-
Mathematica
Table[BellB[n,6],{n,0,20}] (* Vaclav Kotesovec, Mar 12 2014 *)
-
Sage
expnums(18, 6) # Zerinvary Lajos, May 15 2009
Formula
G.f.: 6*(x/(1-x))*A(x/(1-x)) = A(x)-1; six times the binomial transform equals this sequence shifted one place left.
E.g.f.: exp(6(e^x-1)).
G.f.: T(0)/(1-6*x), where T(k) = 1 - 6*x^2*(k+1)/(6*x^2*(k+1) - (1-6*x-x*k)*(1-7*x-x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 04 2013
a(n) ~ n^n * exp(n/LambertW(n/6)-6-n) / (sqrt(1+LambertW(n/6)) * LambertW(n/6)^n). - Vaclav Kotesovec, Mar 12 2014
G.f.: Sum_{j>=0} 6^j*x^j / Product_{k=1..j} (1 - k*x). - Ilya Gutkovskiy, Apr 07 2019
Extensions
More terms from Alois P. Heinz, Oct 09 2008
Comments