cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144223 Number of ways of placing n labeled balls into n unlabeled (but 6-colored) boxes.

Original entry on oeis.org

1, 6, 42, 330, 2850, 26682, 268098, 2869242, 32510850, 388109562, 4861622850, 63682081530, 869725707522, 12352785293562, 182049635623362, 2778394592545530, 43833623157604482, 713738052924821754
Offset: 0

Views

Author

Philippe Deléham, Sep 14 2008

Keywords

Comments

a(n) is also the exp transform of A010722. - Alois P. Heinz, Oct 09 2008
The number of ways of putting n labeled balls into a set of bags and then putting the bags into 6 labeled boxes. - Peter Bala, Mar 23 2013

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          (1+add(binomial(n-1, k-1)*a(n-k), k=1..n-1))*6)
        end:
    seq(a(n), n=0..25); # Alois P. Heinz, Oct 09 2008
  • Mathematica
    Table[BellB[n,6],{n,0,20}] (* Vaclav Kotesovec, Mar 12 2014 *)
  • Sage
    expnums(18, 6) # Zerinvary Lajos, May 15 2009

Formula

a(n) = Sum_{k=0..n} 6^k*A048993(n,k); A048993: Stirling2 numbers.
G.f.: 6*(x/(1-x))*A(x/(1-x)) = A(x)-1; six times the binomial transform equals this sequence shifted one place left.
E.g.f.: exp(6(e^x-1)).
G.f.: T(0)/(1-6*x), where T(k) = 1 - 6*x^2*(k+1)/(6*x^2*(k+1) - (1-6*x-x*k)*(1-7*x-x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 04 2013
a(n) ~ n^n * exp(n/LambertW(n/6)-6-n) / (sqrt(1+LambertW(n/6)) * LambertW(n/6)^n). - Vaclav Kotesovec, Mar 12 2014
G.f.: Sum_{j>=0} 6^j*x^j / Product_{k=1..j} (1 - k*x). - Ilya Gutkovskiy, Apr 07 2019

Extensions

More terms from Alois P. Heinz, Oct 09 2008