cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A144360 Primes of the form 8^k + 7. Also, primes of the form 64^m + 7.

Original entry on oeis.org

71, 262151, 1073741831, 302231454903657293676551, 85070591730234615865843651857942052871, 23945242826029513411849172299223580994042798784118791, 25711008708143844408671393477458601640355247900524685364822023
Offset: 1

Views

Author

Reikku Kulon, Sep 18 2008

Keywords

Comments

k=2m, since for odd k, 8^k + 7 is divisible by 3.
Prime numbers p in A144242 such that p-1 is the fourth a-gonal and seventh b-gonal number for some a and b. Namely, a = (8^k+14)/6 and b = (8^k + 41)/21.
This sequence appears to be a subset of A144313.
The next term has 178 digits. - Harvey P. Dale, Sep 03 2015

Examples

			71 - 1 = 70 is the fourth triskaidecagonal number and seventh pentagonal number.
		

Crossrefs

Programs

  • Magma
    [a: n in [0..80] | IsPrime(a) where a is 8^n+7]; // Vincenzo Librandi, Aug 02 2017
  • Mathematica
    Select[64^Range[40]+7,PrimeQ] (* Harvey P. Dale, Sep 03 2015 *)

Formula

a(n) = A253211(A217381(n)). - Amiram Eldar, Jul 23 2025

Extensions

Edited by Max Alekseyev, Feb 17 2011

A144236 Prime numbers of the form 7^k +- 6.

Original entry on oeis.org

13, 43, 337, 349, 117643, 40353601, 33232930569607, 558545864083284001, 1341068619663964900801, 7730993719707444524137094401, 2651730845859653471779023381607, 256923577521058878088611477224235621321601, 4318114567396436564035293097707728087552248843
Offset: 1

Views

Author

Reikku Kulon, Sep 15 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Flatten[Table[7^k+{6,-6},{k,40}]],PrimeQ]//Sort (* Harvey P. Dale, Jul 07 2021 *)

Extensions

a(12)-a(13) from Amiram Eldar, Jul 23 2025

A144242 Prime numbers of the form 8^k +- 7.

Original entry on oeis.org

71, 262151, 1073741831, 549755813881, 302231454903657293676551, 85070591730234615865843651857942052871, 23945242826029513411849172299223580994042798784118791, 25711008708143844408671393477458601640355247900524685364822023
Offset: 1

Views

Author

Reikku Kulon, Sep 15 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Sort[Flatten[Table[8^k+{7,-7},{k,90}]]],PrimeQ] (* Harvey P. Dale, Aug 08 2016 *)

Extensions

a(8) from Amiram Eldar, Jul 24 2025

A144245 Prime numbers of the form 9^k +- 8.

Original entry on oeis.org

17, 73, 89, 6553, 6569, 4782961, 4782977, 3486784393, 3486784409, 31381059601, 1350851717672992097, 984770902183611232889, 381520424476945831628649898801, 969773729787523602876821942164080815560169, 145557834293068928043467566190278008218249525830565939618489
Offset: 1

Views

Author

Reikku Kulon, Sep 15 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Union[Flatten[#+{8,-8}&/@(9^Range[100])]],PrimeQ] (* Harvey P. Dale, Oct 24 2012 *)

Extensions

Two additional terms from Harvey P. Dale, Oct 24 2012

A144246 Prime numbers of the form 10^k +- 9.

Original entry on oeis.org

19, 109, 991, 1009, 10009, 99991, 9999991, 1000000009, 1000000000000000009, 10000000000000000000009, 999999999999999999999999999999991, 999999999999999999999999999999999999999999991, 1000000000000000000000000000000000000000000009
Offset: 1

Views

Author

Reikku Kulon, Sep 15 2008

Keywords

Comments

This sequence illustrates the base-n representation of numbers having the form n^k +- (n - 1).

Crossrefs

Programs

  • Mathematica
    Select[Sort[Flatten[Table[10^n+{9,-9},{n,50}]]],PrimeQ] (* Harvey P. Dale, Jul 22 2016 *)

Extensions

a(13) from Amiram Eldar, Jul 24 2025

A144247 Prime numbers of the form 11^k +- 10.

Original entry on oeis.org

131, 1321, 214358891, 505447028499293761, 5559917313492231491, 895430243255237372246521, 20796505671840591460586660430317517562942313712635618374571, 539407797827634189900210968137750826278309533633974732577186113975171
Offset: 1

Views

Author

Reikku Kulon, Sep 15 2008

Keywords

Comments

The next term is 18621820132595144528407508578788012958402726053563392593510831217730632927190897881.
The next larger term is 11^273 - 10 and there are no further terms for k < 1001.
It is conjectured that 131 is the only palindrome in the sequence.

Crossrefs

A264734 Prime powers k such that k - 2 and k + 2 are prime powers.

Original entry on oeis.org

3, 5, 7, 9, 11, 25, 27, 29, 81, 241, 59051, 450283905890997361, 36472996377170786401
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 22 2015

Keywords

Comments

From Robert Israel, Nov 22 2015: (Start)
a(14) > 3^1000 - 2 if it exists.
One of a(n), a(n)+2 and a(n)-2 must be a power of 3. (End)

Examples

			81 is in this sequence because 81 - 2 = 79, 81 and 81 + 2 = 83 are all prime powers.
		

Crossrefs

Programs

  • Magma
    [n: n in [5..100000] | IsPrimePower(n-2) and IsPrimePower(n) and IsPrimePower(n+2)];
    
  • Maple
    ispp:= proc(x) local p, r;
      if isprime(x) then return true fi;
      p:= 2;
      do
         r:= iroot(x,p);
         if r^p = x then return isprime(r) fi;
         if r < 2 then return false fi;
         p:= nextprime(p);
      od:
    end proc:
    ispp(1):= true:
    A:= NULL;
    for n from 1 to 1000 do
      B:= map(ispp, [3^n-4,3^n-2,3^n+2,3^n+4]);
      if B[1] and B[2] then A:= A, 3^n-2 fi;
      if B[2] and B[3] then A:= A, 3^n fi;
      if B[3] and B[4] then A:= A, 3^n+2 fi;
    od:
    A; # Robert Israel, Nov 22 2015
  • Mathematica
    Prepend[Select[Range@ 100000, AllTrue[{# - 2, #, # + 2}, PrimePowerQ] &], 3] (* Michael De Vlieger, Dec 03 2015, Version 10 *)
  • PARI
    is(k) = isprimepower(k) || k==1;
    for(k=1, 1e6, if(is(k) && is(k+2) && is(k-2), print1(k, ", "))) \\ Altug Alkan, Nov 22 2015

Extensions

a(12) and a(13) from Robert Israel, Nov 22 2015
Showing 1-7 of 7 results.