A144331 Triangle b(n,k) for n >= 0, 0 <= k <= 2n, read by rows. See A144299 for definition and properties.
1, 0, 1, 1, 0, 0, 1, 3, 3, 0, 0, 0, 1, 6, 15, 15, 0, 0, 0, 0, 1, 10, 45, 105, 105, 0, 0, 0, 0, 0, 1, 15, 105, 420, 945, 945, 0, 0, 0, 0, 0, 0, 1, 21, 210, 1260, 4725, 10395, 10395, 0, 0, 0, 0, 0, 0, 0, 1, 28, 378, 3150, 17325, 62370, 135135, 135135, 0, 0, 0, 0, 0, 0
Offset: 0
Examples
Triangle begins: 1 0 1 1 0 0 1 3 3 0 0 0 1 6 15 15 0 0 0 0 1 10 45 105 105 0 0 0 0 0 1 15 105 420 945 945 0 0 0 0 0 0 1 21 210 1260 4725 10395 10395 ...
Links
- Reinhard Zumkeller, Rows n = 0..100 of triangle, flattened
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394 [math.CO], 2017.
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem (arXiv:0907.0513, 2009)
Crossrefs
Programs
-
Haskell
a144331 n k = a144331_tabf !! n !! k a144331_row n = a144331_tabf !! n a144331_tabf = iterate (\xs -> zipWith (+) ([0] ++ xs ++ [0]) $ zipWith (*) (0:[0..]) ([0,0] ++ xs)) [1] -- Reinhard Zumkeller, Nov 24 2014
-
Magma
A144331:= func< n,k | k le n-1 select 0 else Factorial(k)/(2^(k-n)*Factorial(k-n)*Factorial(2*n-k)) >; [A144331(n,k): k in [0..2*n], n in [0..12]]; // G. C. Greubel, Oct 04 2023
-
Mathematica
Flatten[Table[PadLeft[Table[(n+k)!/(2^k*k!*(n-k)!), {k,0,n}], 2*n+1, 0], {n,0,12}]] (* Jean-François Alcover, Oct 14 2011 *)
-
SageMath
def A144331(n, k): return 0 if k
A144331(n,k) for k in range(2*n+1)] for n in range(13)]) # G. C. Greubel, Oct 04 2023
Formula
E.g.f.: Sum_{n >= 0} Sum_{k = 0..2n} b(n,k) y^n * x^k/k! = exp(x*y*(1 + x/2)).
b(n, k) = 2^(n-k)*k!/((2*n-k)!*(k-n)!).
Sum_{k=0..2*n} b(n, k) = A001515(n).
Sum_{n >= 0} b(n, k) = A000085(k).
From G. C. Greubel, Oct 04 2023: (Start)
T(n, k) = 0 for 0 <= k <= n-1, otherwise T(n, k) = k!/(2^(k-n)*(k-n)!*(2*n-k)!) for n <= k <= 2*n.
Sum_{k=0..2*n} (-1)^k * T(n, k) = A278990(n). (End)
Comments